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Fig. 1. Typical Traffic Noise Spectra on OGA Road (VicRoads). 
 
 Material -  impr ovements to r ecycled aggr egate (RA) concr ete 

used in  the  2L (two-lay ered) barrier and  dev elopment of  an  
environmentally responsible materi al for  the architectural layer 
in the 3L (three-layered) barrier;  

 Production - optimization of production method; and  
 Acoustics and  visual appearance -  fine-tunin g of acoustic 

performance.   
The vis ual appearance of the 2 L KM AK barrie r, es pecially the 

rough surface of the barr ier’s side facing  traffic noise was 
considered as its only major negative feature when it w as evaluated 
by ro ad author ities, landscape architects, inv estors, and pot ential 
clients. There was a concern that the rough appearance may not be 
well p erceived by motorists using urban  freeway s equipp ed w ith 
such noise barriers [5, 6]. 

An addition of  a th ird layer w as deemed  as o ne of  the most 
plausible solu tions. A number  of pa tterns, wi th dif ferent s urface 
features and p erforations, im printed into this architectural l ayer 
were investigated. The patterns  rang ed from a smooth-perforated 
finish to corrugated or  recessed -flat f inishes. The various d esigns 
were s ubjected to bas ic cos t-benefit analyses where th e e ase of 
manufacturing, cost of  the fin al product, aesth etics, and ov erall 
barrier’s sound absorptions were the major evaluation criteria. 

The methodology employed in order to enhance the 3L  KMAK 
barrier’s acoustic performance consisted of the following steps: 
 preparing and testing a v ariety of samples using the AS1935 

impedance tube method [7]; 
 computer simulation and selecti ng one p attern to be imprinted 

into a prototype barrier;  

 
 Fig. 2. Cross-Sections of Impedance Tube Samples. 

 
 producing a casting mould for the architectural layer; 
 developing a light-weight material for architectural layer which 

enhances sound absorption and be visually attractive; 
 manufacturing a prototype barrier in a commercial setting; and  
 testing sound absorption of  th e prototy pe (12 m2 in  ar ea) in  a  

reverberation chamber in  accordance with  the AS1045 m ethod 
[8]. 

The light-weight material used in the architectural finish is based 
on ordinary Portland cement (OPC) and uses a very fine fraction of 
recycled concrete (RC) aggregate. The manufacturing process of the 
3L barri er was test ed in a commercial se tting and  two se ts of  
prototype barrier were cast.  An innovative, cost effective method 
of apply ing pattern, and p erforation to  th e s urface of  ar chitectural 
finish was also developed and tested.  

This paper only reports on the results and methodology employed 
in im proving vi sual app earance and acoustic p erformance of t he 
barrier. 
 
Sound Absorption by Impedance Tube Method 
 
The sam ples us ed in the  impedance tube exp erimentation were 
divided in the 2L and 3L compositions. The 2L samples consisted of 
a s tructural ba cking layer m ade from normal d ensity RA concr ete 
and a porous layer made from no-fines RA concrete. Porous lay ers 
of three dif ferent thicknesses were inv estigated; 25, 35, and  45mm.  
In the 3L samples suite, one of the six different architectural finishes 
was added to  each o f th e 2 L com positions. F ig. 2  prese nts 
cross-sections of the 3L samples.  

 
 

 
Fig. 3. Patterns of Architectural Finishes. 
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Distance between holes (m ) Centres 0.025 Centres 0.030 Centres 0.020
Porous layer thickness (m ) Thickness 0.045 Thickness 0.035 Thickness 0.025
Perforation's diameter (m ) DIA 0.009 DIA 0.010 DIA 0.012
Speed of sound (m/s ) C 340.0 C 340.0 C 340.0
Architectural layer thickness (m ) L 0.010 L 0.010 L 0.012

L1 0.017 L1 0.018 L1 0.021
s 6.36173E-05 s 7.85398E-05 s 0.000113
v 0.000028125 v 0.0000315 v 0.00001

Peak frequency (Hz) F-cy (Hz) 629 F-cy (Hz) 646 F-cy (Hz) 1256  
Fig. 4. Calculated Peak Resonant Frequencies Using Helmholtz Re sonance Function (Note th at the L1, s, and v: Intermediate Coefficients in 
the Calculations of the Peak Frequency).   
 
Table 1. Basic Parameters of V arious Pa tterns in t he Arc hitectural 
Finish.  

A - group B - group C - group 
 

A1 A2 B1 B2 C1 C2 
Perforations (%) 8 14 8 14 8 14 
Pattern  Grooves  Holes  Holes & Grooves

Size 
9 × 90mm 
Length 

9mm 
Diameter 

50% Holes + 
50% Grooves 

 

 
Fig. 5. Traffic Facing Side of the 3L KMAK. 
 

A num ber of f inishes with  v arying s urface s hape and  f eatures 
were investigated and  categorized  in three groups. The A-group 
consists of grooves; the B-grou p of holes; and  the C-group of  a 
combination of grooves and ho les. Fig. 3 pr esents the three b asic 
perforation patterns. 

Previous study on the correlation between porous  layer thickness 
and per centage of circu lar p erforations in the architectural la yer 
suggested a workable range of p erforation between 8 and 25% [9]. 
Based on p revious resear ch da ta and co mputer simulations 
impedance tube samples with the two 8 and 14% perforation of  the 
architectural l ayer, w ere prepa red and  t ested. For the b arrier’s 
prototype the 14% perforation w as deemed to provide best balan ce 
between structural and acoustic performance. Parameters of the six 
most feasible architectural finishes are presented in Table 1. 
 
Computer Simulation and Selection of Optimum Pattern 
 
Simple com puter sim ulation b ased on  th e Helm holtz reson ance 
principles was  used to  determin e th e optim um par ameters of the 
architectural finish layer. The thickness of the layer was on e of the 
variables used in the f ine-tuning of the sound absorption of th e 3L 
barrier. The simulation indicated the optimum thickness of 10mm,  

 
Fig. 6. Sound Absorption of T wo-Layered Samples Measured  in 
Impedance Tube. 
 
which was cons equently applied to impedance tube samples and  to 
the prototype barrier. Fig. 4 demonstrates the simulation’s variables, 
amongst others, the thickness  of porous lay ers ( e.g. 45 mm), 
thickness of architectural finish, and resulting peak frequency. 
 
Production Process 
 
To optimize the manufacturing process and maintain low production 
cost, a simple roller device to imprint patterns and perforations was 
developed. The process, which  deviates slightly  from a common 
industry practice, was modified to allow a replacement of a standard 
casting mould. The three layers were pl aced consecutively one on 
top each o ther with a final one-way  passage of  the roller  over  the 
architectural finish. Fig. 5 presents an impression of the finish used 
to prepare the mould.  

Production of th e 3L  barr ier’s p rototype was d ivided in to thr ee 
stages, of fou r panels each . The panel size is 1.2 × 1 .2m with  the  
overall thickness of 150 mm. P rocess an alysis, material s ampling, 
and testing  allo w progressive improvements to  th e d esign and 
production pro cess. A set o f eight p anels prod uced is  read y to be 
transported and tested in a reverberation chamber. 
 
Results  
 
In this pap er o nly impedance tube  tes t res ults are pr esented and 
analyzed in  rel ation to ro ads tra ffic noise . Curre nt results conf irm 
that of previous study into volume of voids in porous layer (function 
of layer thickness and aggregate size) and sound absorption of 2L  
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Fig. 7. Sound Absorption of Thr ee-Layered Samples with C2-type 
Architectural Finish. 
 

 
Fig. 8. NRC of T wo and Thr ee-Layered Sam ples Derived fr om 
Impedance Tube Testing. 
 

  
(a)                         (b) 

Fig. 9. The (a) 2L and (b) 3L KMAK Prototype Barriers. 
 
samples [2, 10]. 

There is positive corre lation between layer thickness and  soun d 
absorbance. On average, s amples with  a  porous  l ayer th ickness of 
45mm (2L-45mm), absorb on average 68% of  inciden t sound at a 
peak fr equency of 600Hz, with overall absorption of 40%  in a 
frequency range between  125  and 2,000H z. Similarly  2L-35mm 
samples’ aver age sound absorption is 56%  at 1 ,000Hz and  the 2L 
samples with th e porous lay er thickness of  25mm absorbs 52% at a 
peak fr equency oscillating around 1,250Hz. Fig. 6  presents 
impedance tube results for 2L samples. 

The addition of the architectural layer increases sound absorption 
by approximately 20% and also shifts the p eak frequency closer to 
lower frequencies. Fig. 7 p resents sound absorption ch aracteristics 
of the 3L samples with grooves-and-holes type of perforation. 

It should also be noted th at measured peak fr equencies of soun d 
absorption for 3L s amples confirm tha t of  t he calculated o nes, 

within an average to lerance margin of 1 1%. F or exam ple the  
calculated peak  frequ ency of 3L_C2_45mm samples is  629 Hz, 
which is the same as the measured frequency.  

Calculated NRCs for the two  and thr ee-layered samples show a  
familiar trend  o f incr easing i ts potent ial to absorb sound as the 
thickness of por ous lay er increases (see Fig. 8).  The re sults also  
show that addi tion of the ar chitectural layer increases the NRC by 
100% from 0.17 for 2L samples to 0.34 for the 3L samples. 

The visual appearance of the barrier has radically changed from a 
rough surface of  no-fines concrete to a smooth, pattern perfor ated 
surface of  an  architectural fin ish. In addition a  us e of  oxid es was 
investigated to increase a r ange of possible co lors of the 
light-weight material used in t he archi tectural finish.  Figs. 9(a) 
and 9(b) present the 2L and 3L KMAK prototypes. 
 
Conclusions 
 
The results  c learly d emonstrate that th e acoust ic ch aracteristics of 
the two and thr ee-layered KM AK barrier indicate th at the p eak 
frequency occurs in the frequency range between 600 and 1,000Hz, 
which coincides with the  predominant frequencies of tr affic no ise. 
Consequently it is well suited to mitigate road traffic noise with the 
dominant SPL in the frequency range between 700 and 1,200Hz. 

The simple manufacturing process and the use of  recycled and/or 
reclaimed materials make the alternative barrier vi able to s tandard 
concrete or timber barrier. The added benefit of  sound absorbance 
would also allow reduction in the barrier’s height and consequently 
reduce material usage [2]. 
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