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Modeling Fatigue Cracking of Asphalt Concrete Mixtures Using Viscoelastic
Continuum Damage Theory and Finite Element Analysis

Sungho Munl, Ghassan R. Chehab2+, Tanmay Kumar3, and Y. Richard Kim*

Abstract: The development of advanced material characterization models and their implementation in finite element analysis (FEA)
using sound structural models can lead to efficient design and maintenance alternatives for asphalt pavements. Particularly,
characterization of asphalt concrete in tension is a crucial element for accurate prediction of cracking distresses. A viscoelastic
continuum damage model (VECD) based on: (1) the elastic-viscoelastic correspondence principle using pseudostrains; (2) the work
potential theory for damage modeling; and (3) the time-temperature superposition principle with growing damage has recently been
developed and continuously refined. This study incorporates the VECD in a user developed FEA module to predict responses of an
asphalt pavement structure. Complex modulus testing was performed for obtaining linear viscoelastic properties of asphalt concrete
mixtures, while monotonic tensile strength tests were conducted for obtaining the model’s damage parameters. The model was verified
by using FEA for a series of loading conditions and temperatures, which were used in laboratory testing. The predictions of deformations

were very close to those measured from the laboratory tests.
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Introduction

Fatigue cracking is one of the major distresses affecting the
performance of asphalt pavements. Fatigue cracks can initiate at the
bottom of the asphalt concrete layer due to tensile stresses induced
by flexure and propagate to the pavement surface under repeated
load applications. Recent research also suggests that fatigue cracks
can also initiate at the pavement surface due to tensile and shear
stresses resulted from the interaction between truck tires and the
pavement surface. Accurate characterization of the tensile
stress-strain behavior of the viscoelastic asphalt materials of the
upper layers of flexible pavements is necessary in understanding
and predicting the both bottom-up and top-down fatigue cracking [1]

Background

A fundamental approach to the prediction of fatigue damage growth
in asphalt pavements is two-fold. First, a material constitutive model
needs to be developed. This model should be able to incorporate the
effects of various conditions encountered in actual pavements such
as temperature, aging, rate of loading, loading time, and rest time.
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Well-established theories in the discipline of materials mechanics
are available for this task. The second step is to incorporate the
material constitutive model into a structural model that computes
stresses and strains in pavement structures. This structural model
accounts for the effects of boundary conditions (such as layer
thicknesses, pavement edges, bedrock, etc.) for the pavement in
question.

In recent years, there has been some success in developing a
mechanistic constitutive model of asphalt concrete (AC) for
pavement applications. Kim et al. [2] developed a uniaxial
viscoelastic continuum damage model by, first, applying the
elastic-viscoelastic correspondence principle to separate out the
effects of viscoelasticity. Internal state variables were then
employed based on the work potential theory to account for the
damage evolution under loading and the microdamage healing
during rest periods. From the verification study it was found that the
constitutive model has an ability to predict the hysteretic behavior
of the material under both monotonic and cyclic loading up to
failure, subjected to varying loading rates, random rest durations,
multiple stress/strain levels, and different modes of loading
(controlled-stress versus controlled-strain). Daniel and Kim [1]
discovered a unique damage characteristic curve that describes the
reduction in material integrity as damage grows in the AC specimen,
regardless of the applied loading conditions (cyclic versus
monotonic, amplitude/rate, and frequency). The model accurately
predicts performance of AC mixtures up to intermediate
temperatures. For high temperatures, Chehab et al. [3] demonstrated
that the time-temperature superposition is valid not only in the
linear viscoelastic state, but also with growing damage. This finding
allows for extending the model to characterize high temperature
behavior of AC mixtures under various loading conditions.

Study Objectives
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The objective of this study is to incorporate the viscoelastic
continuum damage model (VCDM) developed and progressively
improved and refined [1, 2, 3] into finite element analysis (FEA). The
approach follows similar works [4, 5], in which viscoelastic
constitutive relationships based on the correspondence principle and
work potential theory were established in finite element (FE)
routines.

Parameters and material properties for the viscoelastic model are
derived from stress-strain data measured from complex modulus tests
(E*) and from constant crosshead-rate tests. Tests are done in uniaxial
mode under direct tension on cylindrical gyratory compacted
specimens. The material model is then incorporated with a structural
model of a typical pavement into a FEA routine in ABAQUS. The
model in FEA is used to predict the strains of monotonic tests and
compare them with the measured ones for validation. The validation
process verified the code for modeling the rate-dependent behavior of
AC with growing damage in tension. Once validated, the model can
be used with structural models in FEA to predict cracking and other
distresses in asphalt pavements.

Experimental Program
Asphalt Concrete Mixtures

The Maryland 12.5mm Superpave mixture, a standard mixture used
extensively as a surface course mixture in Maryland, was selected
for use in laboratory experiments, which was part of the Superpave
Support and Performance Models Management project, National
Cooperative Highway Research Program 9-19 (NCHRP 9-19),
Tasks F and G completed in 2004.. The coarse-graded Superpave
mixture utilizes 100 percent crushed limestone from Maryland and
an unmodified PG 64-22 binder. No lime or recycled materials are
added. The optimal asphalt content is 5.1% by mass. More details
about component materials and the mix design procedures are
documented in the volumetric design report (NCHRP 9-19) from
which this study is part.

Specimen Preparation and Geometry

Based on an extensive specimen geometry study [6], the 75mm in
diameter and 150mm in height specimen was cut and cored from
150-mm by 180-mm Superpave gyratory compacted specimens.
This specimen was found to give the most uniform air void
distribution and specimen strains for tests in tension, and thus was
selected for use in this research. This geometry is now adopted by
NCHRP for the dynamic modulus test on AC mixtures in direct
tension (NCHRP 9-19). Target air void content was 4% with a
tolerance of 10.5%.

Testing Setup

Two testing systems were utilized in this research. Each consists of
a servo-hydraulic closed loop testing machine, a 16-bit National
Instruments data acquisition board, and a set of loose-core LVDTs
(Linear Variable Differential Transducer). The first system is an
MTS-810 testing system with a 100kN capacity, while the other is a
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UTM-25 with a 25kN capacity. Both testing machines are equipped
with a temperature chamber. The two systems were calibrated
against each other by conducting tests on aluminum and rubber
specimens.

Determination of Linear Viscoelastic Material
Properties

In order to determine time-domain linear viscoelastic response,
complex modulus (E*) test is performed. Using the experimental data
from the frequency-based complex modulus test, it is necessary to
pre-smooth the data to eliminate the noise and waviness of the raw
data [6]. Therefore, data from E* tests were pre-smoothed using a
log-sigmoidal function before conducting the time-domain
Prony-series fit.

Complex Modulus Test

The complex modulus test is performed to obtain the linear
viscoelastic material properties of AC mixtures. Sinusoidal loading in
tension and compression sufficient to produce total strain amplitude
of about 70 micro-strains was applied at six different frequencies: 20,
10, 3, 1, 0.3, and 0.1Hz. Based on earlier work [3], the 70
micro-strain limit was found not to cause significant damage to the
specimen. Tests were run in tension and compression with mean
stress of zero to minimize the accumulated strain at the end of cycling.
For mastercurve construction, seven replicates were tested at four
temperatures: —10, 5, 25, and 40°C.

From complex modulus, E* dynamic modulus, |[E*|, and phase
angle, ¢ can be determined. Also, complex modulus can be
decomposed into storage and loss modulus as follows:

E*=E +iE" (1)

where E’ is the storage modulus, E” is the loss modulus, and i
is /=1 . Dynamic modulus is the amplitude of complex modulus
and is defined below:

| E*|= J(E) +(E")* - (@)

The values of storage and loss modulus are related to dynamic
modulus and phase angle as follows:

E’'=|E*|cos¢ and E” =| E*|sin¢g 3)

The dynamic modulus at each frequency is calculated by dividing
the steady state stress amplitude, & gmp, by strain amplitude, £ g

O amp

| B*

@

Eamp

The phase angle, ¢, is associated with the time lag, At¢, between
the strain input and stress response at the corresponding frequency,

f
¢ = 27fAt ®)

Fitting Data to log-Sigmoidal Function
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The storage modulus, E’(@), can be obtained from Eq. (3) where @
represents a reduced frequency (w =274 ) at the temperature of
interest. The log-sigmoidal function f (@), is defined as:

f(w)=E'(w)=a1 +(12/{a3 +a4/expk15 +a610g10(w)]} 6)

where a;, a,,..., and ag, are the coefficients determined by a iterative
Levenberg-Marquardt algorithm used in this study. The appropriate
coefficients of Eq. (6) are obtained by minimizing solution between
storage modulus data and log-sigmoidal function and can be
expressed as:

MiNMize log, o [E'(@)]- £ (@) 0]

where [E'(w)] are measured values and f(w) are fitted.

Conversion from Frequency to Time Domain

In time domain, the relaxation modulus in the form of Prony series
is expressed as follows:

M
EW) =Eeo + X Eyy exp(-t/py) ®)
m=

where E., p,, and E, are infinite relaxation modulus, relaxation
time, and Prony coefficients respectively. In order to determine the
above material coefficients from the frequency domain modulus in
Eq. (6), a Fourier-transformed constitutive equation is used as
follows:

M io, p, E
G=|E,+ X ——

g,n=1,..,N ()
+1

where & and £ are defined as stress and strain in the
Fourier-transform domain, with the relaxation time expressed as:

n
Pm = (10)
Em

where “n,,” is the viscosity.
The complex modulus can be obtained from the constitutive
equation shown in Eq. (9) according to the following equation:

Mio E
E*=E_+ X m,n:l,...,N. (11)
m=1 i@, p,, +1

From Eq. (11), the storage modulus in frequency-domain is
determined by taking the real parts of the complex modulus:

2 2
M o, p, E
E(@)=Ep+ ¥ 22 n=1..,N. (12)
m=l 2 2

In order to obtain the time-domain relaxation modulus, the
Prony-series function in Eq. (8) is determined by using the
equivalent E.., p,, and E; shown in Eq. (12); E.. can be found by
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the limit of E’(@)|p<ac<;. The Prony-series coefficients, Ep, are
obtained based on the selected relaxation times and reduced
frequencies, p,, and @,, and the following linear algebraic equation:

1

{F}=[E]"(D}or Fpy = E, D (13)

n
where the column vectors, {F} and {D}, are E, and E’(@,)-E..
respectively; the superscript “~1” denotes an inversion; the matrix,
[E], is defined as:

M o 2,02
n m
Eym =m_ ) ,n=1..,N 14
o, py 1

Nonlinear Material Modeling With Growing Damage

AC is modeled as a thermorheologically simple material undergoing
damage which is characterized by the work potential theory. In this
section, the work potential theory for viscoelastic damage
mechanics is discussed in the framework of elastic damage
mechanics coupled with the viscoelastic correspondence principle.
The following describes: (a) the time-temperature superposition
arising from thermorheological simplicity; (b) the work potential
theory for damage in elastic solids; (c) the viscoelastic
correspondence principle facilitating the link between the elastic
damage theory and viscoelastic damage theory; and (d) the complete
viscoelastic damage theory. All these theories are discussed by using
experimental results presented in Fig. 1, which contains the
stress-strain relationships obtained from constant crosshead strain
rate tests.

Time-temperature Superposition

The time temperature superposition states that the stress-strain
behavior at a particular temperature at a given strain rate is identical
to the stress-strain behavior at another temperature at a modified
strain rate. This modified strain rate is obtained by simply scaling the
time with a temperature function (ar) by using the following law:

t=aT-tR (15)

In the equation, # is the reduced time at the reference temperature
(chosen at 5°C for this study), ¢ is the time at the given temperature,
and ar is the time-temperature shift factor. For the data given in this
study, the shift factor is expressed as:

ap=10700002Temp)” () 1308 (Temp)+0.6582

where Temp is temperature. Note that Fig. 1 contains experimental
results at two temperatures, but the rates given in the figure are the
reduced rates at the reference temperature of 5°C (see Table 1 for
details). The reference temperature of 5°C is chosen because the
viscoplastic behavior is minimal at the strain rates used. The
magnified stress-strain curves in Fig. 1 clearly indicate the
rate-dependent behavior of AC — the material is generally stiffer and
stronger at fast rates. For the remainder of the paper, all the
experiments will be viewed in the context of the reduced strain
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Table 1. Reduced Strain Rate and Material Parameters of the Damage Function.

Strain Rate Reduced Strain Rate at Reference Temp. 5°C Initial Pseudostiffness (I) C(S)
0.00003/sec at 5°C 0.00003/sec 0.81 0.81-C(S)
0.000056/sec at 5°C 0.000056/sec 0.80 0.80-C(S)
0.000012/sec at 5°C 0.000012/sec 1.02 1.02-C(S)
0.0135/sec at 25°C 0.000026/sec 1.10 1.10-C(S)

C(S) = exp(—0.00228-8%7%)
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Fig. 1. Stress/Strain Curves for Varying Reduced Strain Rates in
Tension Lab Tests: (a) Stress/Strain Curves up to Micro-Crack
Failure; and (b) Magnified Stress/Strain Curves at Initial States.

rates at the reference temperature.
Elastic Damage Models

Schapery [7, 8] proposed a simple model for viscoelastic
composites with growing damage that is based on replacing the
physical displacements by quantities called pseudo-displacements.
An elastic material’s thermodynamic state is a function of
independent generalized displacements, g; (=1, 2,..., J), and
internal state variables, S,, (m=1, 2,..., M), where the inelastic
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behavior is captured from changes in S,,. Generalized forces, Q;, are
defined for each virtual displacement, dq , and virtual energy, oW ,

in the following form:
Qj=8W/8qj (16)

In isothermal conditions, the virtual energy, W, is the Helmholz free
energy. Therefore, W can be viewed as the strain energy depending
on the strain tensor, &, and internal state variables, S,,. In a standard
physical setting of stress and strain, Eq. (16) becomes

ow
(o =a— G, j=1,2,3) a7

where o = the stress components of the constitutive equation in the
form of tensor notation.

The internal state variables are chosen to account for changes in
the structure such as microcracking or macrocracking based on the
following damage evolution laws:

_a_W: aWS (18)
as_ oS,

where Wy = W(S,) is the dissipated energy, a function of the
damage parameter (S,,), due to damage growth. The left side of Eq.
(18) is the available thermodynamic force for damage growth while
the right side is the required force.

The above work potential theory is used as a guide to develop an
axisymmetric constitutive relationship from the damage model. As
suggested by Schapery [9], the elastic strain energy density for a
local transverse isotropic composite material can be written in the
following form:

1
w= E[Aneé +Aneq +2A,e,e, + Ay (7)) + A66(e§)] 19

where x; is the material axis of symmetry and

e, =&, 1€, +Ey, €,=E5-€,13, e;=6,—¢&,,and ¥, =2¢,
(7, = 7, = 0in axisymmetric model). The five coefficients (e.g.,

Ajp, A, Ap, Ay, and Agg) are the elastic moduli depending on the
state of damage. When an uniaxial stress state is taken into account
with a maximum strain direction pointed to axis of x; (e.g., &; = &,
es = 0, and %3 = 0), the strain energy density in Eq. (19) can be
reduced to w’ which is independent of A, and as shown below:
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L1
w'= E(Ane‘f +Agye; + 24 e ey + Agel) (20)

The derivative of Eq. (20) with respect to the principal strains
(e.g., €11, €2, and £’33) provides the principal stresses. Thus:

(A AD & A A) 6 —Ase

G (AA) & HA—AD & HAg e ey

=AD& HArAY &

The relationship between the strains, & (, k = 1, 2, 3) in the
reference coordinate system, and the principle strains, €; (i = I, 2,
3), is given by the general second order tensor transformation
below:

g, = Qijgikgjk (22)

where the above transformation matrix €;; is cosine(x’;, x;), which is
the direction cosine of the axes between x’; and x;. A similar
transformation law applies for stresses:

o, =Q,Q0, 23)

where the superscript “7” denotes the transpose of a matrix and ¢’;
is a diagonal tensor containing the principal stresses. From earlier
work [7, 8], the five coefficients, A;; to Ag, in Eq. (19) can be
determined in terms of a damage function, C(S), Poisson’s ratio v,
and Young’s modulus E:

-1 20+v) _ (1-2v)
AII_Q{C(S)+E (1_2V)], A, =C(S)+E 2y’
A —1[C(S)—E], A, =A, =—L @9
273 44_‘4“6_2(1+v)‘

The damage function (C), and internal variable (S) are discussed
in the following section.

Viscoelastic Correspondence Principle

Correspondence principles in linear viscoelasticity theory usually
refer to elastic-viscoelastic relationships involving Laplace or
Fourier transformed stresses and strains. Instead of a stress-strain
constitutive equation, viscoelastic materials can be represented by
an elastic-like relationship through the use of so-called
pseudovariables [10]. The correspondence principles developed by
Schapery for time-dependent, quasi-static solutions to nonlinear
viscoelastic boundary value problems can be used to obtain a
viscoelastic solution by easily constructed the elastic solution
described in the above section. For linear viscoelastic materials, the
stress-pseudostrain relationships take a form similar to elastic
stress-strain relationships:

R R
o-ij - Cijklgkl

where C = 48,8, + (8,5, +56,5,) 25

ijkl ikl i jk

R ! agkl
and ¢, TEGt-1) dT
0

1
E, T
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CRij,d is the material constant; & is the pseudostrain tensor; Ef is
the reference modulus; E(?) is the relaxation modulus; and A and u
are Lamé constants defined as:

VE E
A=—=r u= —F (26)
a+v)a-2v) 20 +v)

Furthermore, v is a constant Poisson’s ratio, and &; is the
Kronecker delta:

=1' .= /
85 r=J @7
=0; i#]

Note that all the hereditary effects of the viscoelastic material are
accounted through the convolution integral in Eq. (25).

Viscoelastic Damage Models

Schapery further extended his elastic damage theory to viscoelastic
materials with the help of the correspondence principle [10]. To
include the viscoelastic effects of microcracking, he proposed the
following rate-type damage evolution law:

.
S W (28)
" os
m
where the overdot represents the derivative with respect to time; WX
= WX(&", S, is the pseudostrain energy density function; a, is a
material-dependent constant; where m is not a summation. The
available thermodynamic force, -9W®0S,,, is similar to a crack
growth equation presented by Park and Schapery [11]. The form of
the evolution law was adequate for describing the multiaxial
behavior of particulate composites with growing damage [12]. In
this study, this approach is applied to AC materials.

In order to determine the damage model parameter of the
rate-type damage evolution, the stress responses at given strain rates
and temperatures were measured, as shown in Fig. 1, under constant
crosshead strain rate tests conducted on the cylindrical specimens
[13]. Furthermore, LVDTs were mounted on the specimen surface to
measure displacements with respect to time; the displacement was
then converted into the effective strain applied to the specimen.
However, the lab results obtained from experimental tests show a
discrepancy between the linear strains controlled by a closed-loop
servo-hydraulic MTS testing machine and the effective strains
measured from the LVDT. In an attempt to ensure consistency in
applying the viscoelastic theory with growing damage, the real
strains obtained from the LVDTSs were used for the analysis [14].

The experimental stress-strain constitutive relationship obtained
from the above uniaxial tests was incorporated into the
one-dimensional pseudostrain energy density function of the
material in the following form:

1
Wt ==c©S)e")’ (29)
2
where the damage function, C(S) , depends on a single damage
parameter, S. Then, the stress in Eq. (17) can be obtained based on

Schapery’s correspondence principle, as follows:
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Fig. 2. Normalized Damage Function/Parameter Curves for Two
Fast Reduced Strain Rates Used to Obtain a Representative Fitted
Function.

ow*
o’

o= =C(S)e" o C(S):E% (30)
Therefore, the damage function, C(S), can be determined using the
experimental stress, o, and the pseudostrain, £ .

The pseudostrain is calculated by using Eq. (25). Due to the
expensive nature of the convolution integral, several authors have
proposed efficient integration techniques [15-18] which based on Eq.
(8). Using the expression, it is shown that the convolution in Eq. (25)
can be replaced by the following recursive computation [5],

1 M
R,n+1 n+1 m,n+1
g, = —(Eos,d -XEe¢ ) 3D

kL m "kl

E m=1

R

M
with E, =E_+XE, ,and

m=1

n+l
m,n+l Ag H
kl

_an ~Aty1! Py, mon n
=g, te (&, -¢)t

lav,., -, (1 erem )
n+l

In the above, the pseudostrain is split into M pseudostrain
components based on the Prony-series expansion of Eq. (8).

For uniaxial loading conditions, a single damage variable (S) is
used along with the associated power, a. The value of o is obtained
from the experimental data and by the following incremental
relationship obtained from combining Egs. (28) and (29):

. 1(1+a)

1 R.2
AS =|3-—AC(") ¢ Mt then,
2

M=

a/(l+a)
1
S = [—(C“ -C, )(sf)z} (r, -1, )" (32)
2

=
L

Using optimization search techniques and the data from the first two
cases in Table 1, the value of a is found to be equal to 2.5.
Furthermore, a relationship is constructed between C and S, as
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Fig. 3. Stress Prediction of 0.00003/sec and 0.000056/sec Reduced
Strain Rates Used for Constructing Master Damage Function.

shown in Fig. 2. Note that the specimen-to-specimen variation is
taken into account by assuming that all the results were scaled by
the initial pseudostiffness (see Fig. 3). From Figs. 2 and 3, it can be
observed that the stiffness scale factor, C(S), can be fit into the
normalized functional form C(S) = exp(-0.00228-5%3%).

Similarly, the axisymmetric continuum damage viscoelasticity is
simply obtained by using the correspondence principle in the
framework of axisymmetric elastic damage mechanics. Using this
idea, the pseudostrain energy density function is defined as:

w* =%[Au(e§ Y +A,(€)) +24, el + A, (V) + A (eF )2](33)
where

es =gl +el +el ek =gl €13, ef =l —&} ,and ¥} =2£]

( }/11; = y:; =0 in axisymmetric model). In terms of principal
pseudostrains,
W - %[A“(ef)z +A, () +24,ele; + A, (e§)2] (34)

Results shown below are constitutive relationships between stress
and pseudostrain.

, 1 1
o'y =4, _§A12 )elI/e +(A, _§A22 )ef - Assef:
, 1 1
o'y =(4, _§A12 )e‘l; +(4, _EAzz )65 + Aﬁse§ (35

, 2 2
o'y=(4, +§A12)e§ +(4, +§A22)ef'

Results and Finite Element Implementation

Due to the nonlinear nature of damage, Newton-type iterative
methods are needed to solve the equilibrium equations. The tangent
stiffness matrix needed in the solution procedure is often obtained
by the tangent modulus relating the infinitesimal increase in the
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Fig. 4. Stress Prediction Compared to Measured Stress in Lab Tests:
(a) 0.000012/sec Reduced Strain Rate; and (b) 0.000026/sec
Reduced Strain Rate.

stress to the infinitesimal increase in the strain. For damaged
viscoelastic solids, the tangent modulus is obtained using the
following chain rule based on the ideas of the correspondence
principle:

R
do; 90, Jg

=— = 36
W 9g, et og, 36)

For linear viscoelasticity, the terms on the right side of the above
equation are given by:

a0 o r

ogk ™

and

oek 1 1 |x S

- g + E (-e ™ 37
o8, Ei| " A, L’Z::lpm n . 7

where CRijk, is defined in Eq. (25). Noting that in Eq. (25), E., E,,
and p,, are all constants, it is observed that the tangent modulus for
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linear viscoelastic solids is dependent only on the time step size
Aty

To obtain the tangent modulus for growing damage, the chain rule
(Eq. (36)) is modified in terms of the work potential as follows:

C = L/t B
mro 9egR oe, 9%} oe,
and
a2WR ayR
c. - 7k (38)
e 327,1); 3713

(Cyyyp =Cysy3 =0 in axisymmetric model)

The terms 9&,~/0¢,, and %305 are all related to the definition
of the pseudostrain, which is identical to the pseudostrain in the
linear viscoelastic case; Eq. (37) can be readily applied to compute
these terms. The pseudostiffness, *W*¢e, ®, is obtained by using
an incremental form of Eq. (33). The pseudostiffness can be
expressed in terms of the coefficients of the C(S) damage function
Aq, Az, Ap, and Ags, (Eq. (24)).

Once the tangent stiffness is obtained from Eq. (38) in the
principal stress directions, a standard fourth order tensor
transformation can be used to obtain the tangent stiffness in the
original coordinate system:

Cu =Q,Q,Q,Q,C 39

pars

where Q,, is the rotation tensor given in Eq. (22).

The procedure described above is implemented in the viscoelastic
continuum damage FE program. Essentially, the FE program solves
the equilibrium equations with the help of a Newton-type iterative
method. Following steps are involved in the implementation:

1. Calculate the pseudostrain using the numerical integration
scheme in Eq. (31); using these strains, determine the principal
pseudostrains as well as the transformation matrix in Eq. (22).

2. Calculate principal stresses, which are functions of material
coefficients (e.g., A;;, Az, Aj, and Ag) and the pseudostrain;
transform the principal stresses back to the stresses in the
reference Cartesian coordinate (x; x, x3) system using the
transformation matrix. These stresses are used to compute the
residual needed for the Newton iteration.

3. Determine the components of the incremental tangent modulus
using an incremental form of Eq. (39).

4. Update the damage parameter, S, using an incremental form of
the rate-type evolution law (Eq. (28)) and the definition of
pseudostrain energy density (Eq. (34)). The resulting updated
procedure is given below:

5 Svupdate —J_ n+l
n+l AS assumed
n+l

[WvR (S" +ASassumed)_WvR (Sn )] aA
tn+l (40)

S =8, +AS e

n+l

The above steps are embedded in the equilibrium solution process of
the FE program that gradually increases the loading to obtain the
incremental response of the system.
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Verification with Experimental Data

The material modeling approach presented and the FE
implementation in this section are verified with the use of the
experimental results presented in Fig. 1. The cylindrical test
specimen is modeled with the help of axisymmetric finite elements.
To save computational time, only a quarter of the cylinder is
modeled by considering the symmetry of the specimen as well as
the loading. As discussed before, the experimental data
corresponding to 0.00003/sec and 0.000056/sec reduced strain rates
are used to characterize the viscoelastic damage parameters. The
resulting damage parameters are, in turn, used in the FEA to obtain
the response of the cylindrical specimen. The computed results are
compared with the experimental results in Fig. 3. The close match
between the computed and observed results shows the accuracy of
the FE implementation.

In order to verify the effectiveness of the material modeling
procedure, the FEA is conducted at different reduced strain rates,
0.000012/sec and 0.000026/sec (see Table 1). The computed results
are compared with those obtained from experiment in Fig. 4, where
very good matches are observed.

Therefore, it can be concluded that the viscoelastic damage model
and its FE implementation are fairly accurate. However, the FE
model verification by applying biaxial experimental tests with
confining pressure was not carried out since experimental data was
unavailable.

Conclusions and Future Work

The paper presents the methodology for incorporation of a VCDM
and a structural model in FEA of asphalt pavement structures. Based
on AC material modeling and FE implementation in ABAQUS, a
VCDM is used for the asphalt layer while a nonlinear elastic model
is used for unbound soil layers. Both the FE implementation and the
applicability of the damage model for AC were tested using
laboratory experimental data. Complex modulus tests and constant
crosshead rate damage tests were conducted in uniaxial tensile mode
to determine the model parameters for the asphalt mixture used. The
model, implemented in FEA, was validated using stress-strain data
from a new set of laboratory tests conducted at various loading
conditions.

Future work will focus on using and expanding the findings from
this study and other works done by the authors to investigate the
effects of asphalt-layer thickness, layer stiffness, contact pressure
distribution, and load level on the stresses and fatigue-cracking
mechanism in aggregate base pavements. Other applications include
thermal cracking and top-down shear-related fatigue cracking.
Additionally, a viscoplastic model, recently developed by the
authors, will be combined with the existing viscoelastic model to
form a viscoelastoplastic model. Future studies will focus on
incorporating the model in FEA to predict permanent deformations
in asphalt pavements.
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