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Statistical Models for Determination of the Resilient Modulus
of Subgrade Soils

Pranshoo Solanki!*, Ali EbrahimiZ, and Musharraf M. Zaman>

Abstract: A combined laboratory and modeling study was undertaken to develop a database for subgrade soils in Oklahoma and to
develop relationships or models that could be used to estimate resilient modulus (Mg) from commonly used subgrade soil properties in
Oklahoma. Sixty-three soil samples from 14 different sites throughout Oklahoma were collected and tested for the development of the
database and the statistical models. Additionally, thirty-four soil samples from 3 different sites, located in Rogers and Woodward
counties, were collected and tested to evaluate the developed models. The routine material parameters selected in the development of the
models included moisture content (w), dry density (y,), plasticity index (PI), percent passing No. 200 sieve (P,y), and unconfined
compressive strength (U.). Bulk stress () and deviatoric stress (05) were used to identify the state of stress. Several statistical models
were developed in this study. These models include: stress-based, multiple regression, polynomial, and factorial. Each model was ranked
based on its R? (goodness of fit) and F values (significance of the model) for the development dataset. Based on the R%and F values, the
second order polynomial and factorial models were further considered for the evaluation dataset. An evaluation of the two models
indicated that for the combined development and evaluation datasets, a second order polynomial model is a good statistical model for
evaluating My from the selected routinely determined properties. The models developed in this study are expected to be useful in the
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Level 2 and Level 3 designs of pavements in Oklahoma.
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Introduction

Empirical design methods for flexible pavement structures are
primarily based on the equations that were developed largely from
the AASHO Road Tests conducted in 1950’s. These methods fail to
reflect the dynamic nature of traffic loads. Therefore, the
mechanistic design methods referred to as the “AASHTO Guide for
Design of Pavement Structure” [1] recommended the use of resilient
modulus (Mr), a dynamic-strength parameter, to characterize the
flexible pavement materials. The Mr accounts for the cyclic nature
of vehicular traffic loading, and is defined as the ratio of deviatoric
stress to recoverable elastic strain.

Several laboratory and field procedures are currently either used
or evaluated for determining a design My value of subgrade soil.
Direct laboratory methods used for evaluating My during the past
two decades includes resonant column, torsional shear, gyratory, and
repeated load triaxial testing [1-4]. Among these testing procedures,
the Mr from repeated load triaxial test (RLTT) is used most
frequently because of the repeatability of test results and its
representation of field stress in controlled laboratory environments.
RLTT is conducted in the laboratory on remolded or undisturbed
samples according to different AASHTO test methods of which
AASHTO T-307-99 is used frequently [S]. The AASHTO T-307-99
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test method can be a time consuming and expensive test method,
particularly for small projects.

In the new 2002 AASHTO guide, which is currently in the
evaluation stage, a hierarchical approach is used to determine
different design inputs including Mg [5]. It requires the evaluation
of the engineering properties of subgrade soils in laboratory or field
to pursue a Level-1 (most accurate) design. For a Level-2
(intermediate) design, however, the design inputs are user selected,
possibly from agency database or from limited testing program or
could be estimated through correlations [5]. A Level-3 design,
which is the least accurate and generally not recommended, uses
only the default values. For Level-2 designs a regression model for
Mg can be very useful as it provides the designer with significant
flexibility in obtaining the design inputs for a project.

In the present study, conventional laboratory tests were conducted
on some commonly encountered subgrade soils in Oklahoma, and
statistical analyses were conducted to develop regression models for
M for Level-2 pavement design applications. The models
developed herein consider both stress (deviatoric stress and bulk
stress) and commonly used properties (unconfined compressive
strength, dry density (y;), moisture content (MC), gradation, and
Atterberg limits). The strengths and the weaknesses of the
developed statistical models were also examined using additional
My test results that were not used in the development of these
models.

Review of Previous Studies

Several pertinent studies have previously been undertaken to
develop empirical correlations to estimate My values in terms of
other soil properties. One of the commonly used models to represent
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My is the power model (see e.g., [6-14]). Dunlap [6] proposed the
following correlation for Mg:
Mg =1(1(03/Pa)kz 1)
where 03 is a confining pressure, P, is a reference pressure (e.g.,
atmospheric pressure) and k; and k, are the regression coefficients.

A number of researchers (see e.g., [15-20]) have utilized other
soil property indices to estimate Mg. For example, Drumm et al. [21]
developed two regression models for My of fine-grained soils as a
function of deviator stress and soil-index properties, namely,
percentage passing No. 200 sieve, plasticity index (PI), v, and
unconfined compressive strength. A relatively small (twenty-two)
number of these samples were used in developing these models.

In a similar study, Lee et al. [22] investigated the Mg of cohesive
soils, mainly clayey subgrade soils, with RLTT. Specimens were
compacted using standard and modified proctor methods at near
optimum moisture content (OMC) in a mold with a diameter of
38mm (1.5inches) and a height of 100mm (4 inches). It was seen
that the custom-compaction results were in close agreement with the
maximum dry density (MDD) and the OMC from the standard and
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Mg = kP, (0/P,)[(tocr/Py) +11° ©)
where T is the octahedral shear stress, and ki, k,, and ks, are the
regression constants. Yau and Von Quintus expressed these
regression constants as a function of MC, vy, optimum dry density,
liquid limit, percent silt, percent clay, and percent passing different
sieve sizes. The $dils were clildified into thtee GHferent groups
(coarse grained sandy soils, fine grained silty soils, and fine grained
clayey soils), and the regression constants were developed for each
soil type.

Most recently, Khazanovich et al. [14] used Mg results for 23
samples from several locations in Minnesota and evaluated the
regression constants for use in the mechanistic-empirical-based
pavement designs. However, because the mineralogical and textural
characteristics of soils in Oklahoma are different from those in

Table 1. Summary of USCS Soil Classification Results for the
Development and Evaluation Dataset.

Number of Soils

Soil Classification Development Evaluation

Dataset Dataset
modified Proctor tests. Regression analyses were conducted to v ; . 2ase 2ase
. . . . . Unified Soil Classification
obtain a relationship between My and the stress in unconfined
. . . . System (USCS)
compressive strength (Uc) test causing 1% strain (Sypge) in
. . . Fat clay CH 2 1
laboratory compacted specimens. The relationship between Mg and .
. . . Fat clay with sand 0 1
Su1.04% for a given soil was found to be unique regardless of MC and Sandv fat cl cH 1 0
compaction effort. The results showed that the Mg and Sy g vary Lan yla clay CL 23 g
with the MC in a similar manner. Furthermore, four different Lean clay ith sand CL 2 "
compactive efforts were used in that study, but a single relationship can clay with san
. . . Gravelly lean clay CL 2 0
between My and Sy194 Was obtained, as presented in Eq. (2):
Sandy lean clay CL 8 10
Mg = 695.4 (Suoz) — 5.93 (Suron)? %) Sandy lean clay with gravel CL 0 2
Silty clay with sand CL-ML 1 0
where My = resilient modulus at maximum axial stress of 41.4kPa Sandy silty clay CL-ML 1 3
and confining pressure of 20.7kPa; and Syigg = stress (in kPa) Clayey Sand SC 1 1
causing 1% strain in conventional Uc test. Clayey Sand with gravel SC 2 0
Moreover, the relationship was similar for different cohesive soils, Total : 63 34
indicating that it may be applicable for different types of clayey AASHTO Classification System
soils. The limited data suggested that the same correlation might be A4 12 4
used to estimate the Mg for both laboratory and field compacted A6 34 18
conditions. . . A6 17 12
In a field study, Yau and Von Quintus [10] proposed the following Total - ) ”
correlation using the My data obtained from the LTPP test sections: -
Table 2. Basic Statistical Parameters for Specimen PI, P200, MC, DD and UCS.
No | PI P200 MC | DD UCS
Dataset of Sp Sp Sp Sp
Soil S SK KU % SK KU % SK KU kg/m® SK KU «Pa SK KU
Dev 126 84 097 063 150 ~-1.05 037 3.0 039 -014 1067 -026 -044 708 0.68 0.50
Eva:RC+WC 68 89 -003 -122 131 -049 027 29 -024 -094 7438 040 -060 644 078 0.81
Eva: RC 58 84 -032 -08 139 -059 016 26 -049 -037 660 058 002 566 020 -0.57
Eva: WC 10 30 -143 158 80 1.88 389 12 -025 -088 46.0 013 -0.18 959 099 -0.61

Sp: Standard Deviation; SK: Skewness; KU: Kurtosis;

PI: Plasticity Index; P200: Percentage passing #200 sieve; MC: Specimen moisture content; DD: Specimen dry density;
Dev: Development dataset; Eva: Evaluation dataset; RC: Rogers County; WC: Woodward County; UCS: Unconfined compressive strength

International Journal of Pavement Research and Technology

Vol.1 No. 3 Jul. 2008 86



Solanki, Ebrahimi, and Zaman

Minnesota, those results may not be directly used for pavements in
Oklahoma for a Level 2 design.

Sources and Characteristics of Subgrade Soils

In the present study, a total of 97 bulk soils samples were collected
from 16 different counties in Oklahoma. Of these, 63 samples from
14 different counties were used in the development of the statistical
models and are collectively referred to as the development dataset.
These sites were located in Adair, Alfalfa, Choctaw, Delaware, Greer,
Jefferson, Kingfisher, Lincoln, Major, McClain, Noble, Okfuskee,
Osage, and Rogers counties in Oklahoma. The remaining 34 soils
from two different counties namely, Rogers and Woodward counties,
were used for the evaluation of the regression models. Data for these
soils are collectively referred to as the evaluation dataset. A majority
of soils in the development dataset was lean clay and lean clay with
sands (Table 1). A majority of soils in the evaluation dataset, on the
other hand, was lean clay, lean clay with sand and sandy lean clay.

Laboratory Testing and Result

The laboratory-testing program included routine laboratory tests,
namely grain size distribution (AASHTO T11 and AASHTO T27),
Atterberg limits (AASHTO T89 and AASHTO T90) and standard
proctor (ASTM D698), as well as resilient modulus (AASHTO
T307) and unconfined compression (AASHTO T208). Using the
proctor test results, two samples were prepared for each soil with
different compaction conditions. One of these samples was
compacted at the OMC and 95% of the MDD. For the other sample,
the MC and y; were set at 2% wet of OMC, representing the
Oklahoma Department of Transportation (DOT) in-construction
stage requirements [23]. Specimens having a moisture variation of
more than +0.5 percent from the targeted MC and 1y less than 95%
of MDD were discarded and new samples were compacted,
evaluated, and tested. Thus, a total of 126 My tests were conducted
for 63 soils used in the development dataset. Likewise, 68 My tests
were conducted for 34 soils in the evaluation dataset. A static
compaction method (a modified version of the double plunger
method) was used in sample preparation [5]. The unconfined
compressive strength (UCS) test was conducted on the same sample,
following the My, testing. It is assumed that since the My strain is in
the range of ten thousands (mm/mm) the influence of My, test on the
UCS test would be negligible [23].

A summary of the basic statistical parameters for PI, percentage
passing #200 sieve, specimens MC, V3, and UCS is tabulated in
Table 2. Further statistical details of different parameters (i.e. liquid
limit, plastic limit, PI, percentage passing #4, #10, #40, and #200
sieve, specimens MC, 74, and UCS) used in this study are given in
Ebrahimi [23]. Montgomery et al. [24] recommended that datasets
deviating from normal distribution would not affect the outcome of
the analysis and the results would not be critically affected. Hence,
in this study Kurtosis and Skewness were determined to select the
input parameter for regression modeling. Kurtosis parameter is an
indicator of heaviness of the tail. A perfectly normal distribution of
data has a Kurtosis of zero. A positive Kurtosis is an indication of
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more observations on the tail end of the distribution curve, while a
negative Kurtosis is an indication of fewer observations on the tail
end of the distribution curve. Skewness is a measure of distribution
of the data. A skewness of zero indicates perfectly normal
distribution of data. Negative value of skewness indicates the data
skewed left and positive value indicates the data skewed right.

Grain Size Distribution and Plasticity Index

As recommended by the Oklahoma DOT specifications, only
selected sieves (#4, #10, #40, and #200) were used in the grain size
distribution tests. The Skewness and Kurtosis values for #4, #10,
and #40 were fairly high indicating that these results were not
normally distributed [23]. For #200 sieve, however, the overall
skewness (-0.49 to -1.05) and Kurtosis (0.27 to 0.37) values were
much smaller, indicating that these data could be assumed normally
distributed (Table 2). Thus, from the grain size distribution tests,
only percent passing #200 sieve (P,y) was used as an input
parameter in the regression modeling. From Table 2, the Skewness
(-0.03 to 0.97) and Kurtosis (0.63 to -1.22) for both datasets were
negligible, so the distributions of the PI for both datasets may be
considered normal. The PI was used as an input parameter in the
regression analysis.

Moisture Content (MC) and Dry Density (y4)

The Skewness of MC data for the development and the evaluation
datasets were 0.39 and -0.24, respectively (Table 2). The
corresponding Kurtosis values were -0.14 and -0.94, respectively.
These values indicate that the MC data were also approximately
normally distributed. For both datasets, the y4 values were normally
distributed, the Rogers County soils being closer to the development
dataset than the Woodward County soils (Table 2).

Unconfined Compressive Strength

The Skewness and Kurtosis for the development dataset were 0.68
and 0.50, respectively (Table 2). The corresponding Skewness and
Kurtosis for the evaluation dataset were 0.78 and 0.81, respectively.
Overall, the U; values were normally distributed and used in the
regression analysis.

Resilient Modulus

The My, test results for the development and the evaluation datasets
are presented in Table 3. For the development dataset, a very high
standard deviation, more than 340MPa (49.3ksi), is seen for the
loading sequences 1, 6, and 11. A high standard deviation (more
than 89MPa or 12.9ksi) is also observed for the evaluation dataset
for the same loading sequences. For each of these loading sequences,
the applied axial stress is the lowest (13.8kPa or 2psi), resulting in
very small deformation of the sample that are difficult to measure
due to electrical noise. As a result, the My values for these loading
sequences were not used in developing the regression model.

Model Development
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Table 3. Basic Statistical Parameters for Resilient Modulus at Each Sequence for Development and Evaluation Dataset.

Sequence Confining Axial Resilient Modulus (MPa)
No. Pressure Stress Mean Minimum Maximum Standard Deviation
(kPa) (kPa) Dev Eva Dev Eva Dev Eva Dev Eva
1 41.4 13.8 298.6 172.8 54.6 58.1 2042.3 409.1 347.6 89.7
2 41.4 27.6 86.8 80.9 34.5 28.2 229.0 131.3 31.7 21.9
3 41.4 41.4 72.3 66.4 24.6 19.6 163.8 122.1 28.2 24.6
4 41.4 55.2 63.4 54.5 24.3 17.2 155.7 117.8 28.0 21.2
5 41.4 68.9 57.9 49.0 20.7 16.1 152.6 104.4 26.8 19.1
6 27.6 13.8 269.4 161.8 41.9 57.1 2160.8 494.2 341.2 93.1
7 27.6 27.6 84.1 79.0 28.7 33.9 245.9 136.7 33.2 22.9
8 27.6 41.4 70.6 64.2 23.2 22.7 159.5 121.0 28.6 24.4
9 27.6 55.2 63.2 53.5 22.3 18.8 151.7 115.9 28.3 21.2
10 27.6 68.9 58.3 49.4 20.9 16.8 149.2 106.2 27.0 19.6
11 13.8 13.8 3124 190.8 36.1 54.1 1892.2 826.4 393.3 146.3
12 13.8 27.6 93.3 80.4 23.7 36.2 979.9 135.7 87.9 234
13 13.8 41.4 76.9 64.9 19.8 23.9 727.9 126.0 65.9 25.1
14 13.8 55.2 63.9 53.8 19.6 19.4 159.8 116.3 29.6 21.7
15 13.8 68.9 59.4 49.8 18.2 17.3 190.9 107.4 29.3 20.0

Dev: Development Dataset (126 specimens); Eva: Evaluation Dataset (68 specimens)

1kPa = 0.145psi

In the present study, mainly four statistical models were developed,
namely stress-based, multiple regression, polynomial, and factorial.
The My values were predicted using the evaluation dataset and then
compared to the experimental My values. The R* and F values were
utilized as the basis of comparing the developed models in regard to
the goodness of fit and significance of the model, respectively
[25,26].

Stress-Based Model (SBM)

As noted previously, there are several stress-based models (SBM)
available for prediction of Mg [6-12]. In this study, to develop
stress-based model, bulk stress (0) and deviatoric stress (0g) were
used as the model parameters:

Mg/P, =k, (6/P,)** (54/P,)" @)

where P, represents atmospheric pressure, and k;, ky, and k3 are
regression constants. These regression constants are determined for
each My test in the development dataset. The R? values for
individual tests in the development dataset ranged from 0.512 to
0.996 [23]. Then, using the multiple linear regression option in
Statistica 7.1[27], these regression constants are correlated with the
specimen and soil parameters. The following expressions are
obtained for k;, k,, and k3 from the development dataset:

k; =0.08789 + 0.1773 (U/P,) + 0.005048 PI — 0.3967 P,y +1.2652 w (5)
k, =0.5074 — 0.01336 PI + 2.3432 w — 0.3868 (Ya/Yw) ©6)
k3 =—0.6612 + 0.1589 (U/P,) — 0.2254 Py @

where w and 7, are moisture content and dry density of molded
sample.

Fig. 1 shows a plot of the experimental and predicted Mg/P,
values for this model. The overall R* value was found to be as low
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as 0.3226 suggesting that the overall model did not back-predict the
Mg/P, values favorably. Fig. 1 also shows a comparison between
experimental and predicted Mg/P, for three selected specimens,
MA-3B, NO-7A, and OS-1B, respectively. The My results from
these specimens covered the full range of My response for the
development dataset. Specimen NO-7A shows the best prediction,
followed by specimen OS-1B. Specimen MA-3B shows the worst
back-prediction. The soil classification results for these specimens
indicate lean clay with AASHTO classification of A-6(10), A-6(16),
and A-6(21) for OS-1B, NO-7A, and MA-3B, respectively. The U,
results for OS-1B, NO-7A, and MA-3B were 161, 272, and 310kPa
(23.3, 39.4, and 45.1 psi), respectively [23]. Thus, even though these
soils are all classified.

25
R2=0.3226
R =0.5680 Equality Line
2.0
a
= 1.5
é ) ° o, X ° ° 4
»
= Py ¢ °of
= ° 0 8800 O @ g
.g 10 ,:'A ooo%" W fgooﬁo‘ ::3 °
ﬁ : o o929 ORI o gj":“o. ° §A§
& f 0 £°% R °
X %
R
0 ! X 0% o
.5 7 3
09 .3\ 3‘\6
° AMA-3B
¢ °
NO-7A
80s-1B
0.0 T
0.0 0.5 2.0 2.5

1.0 1.5
Experimental Mg/P, (x10%)

Fig. 1. Comparison of Experimental and Predicted Mg/P, for
Development Dataset: Stress-Based Model.
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Table 4. Summary of R? and F Values for the Statistical Modeling
Using Development Dataset.

Statistical Model R’ F
Stress-based 0.3226 253.37
Multiple Regression 0.4357 165.88
Polynomial 0.4858 101.02
Factorial 0.6595 23.74
Separate Slope 0.8722 56.45
Mixture Surface 0.5522 67.79
Homogeneity of Slope 0.9430 83.38

as A-6 soils, their UCSs were quite different. Overall, it was observed
that the My values increased with increasing UCS. This may have
been a contributing factor for the three specimens exhibiting different
levels of correlations between the experimental and predicted Mg.
From Table 4, the F value for this model is 253.37, which is an
indicator that a more complicated model may be desired for the
development dataset used here. Based on the R?>and F values, as well
as from the aforementioned findings, it was concluded that the
stress-based model is not appropriate for prediction of Mg.

Multiple Regression Model (MRM)

Multiple regression model (MRM) represents a class of simple and
widely used linear regression models for more than two continuous
variables [24, 27]. Using the same development dataset in Statistica
7.1, the following MRM was developed:

Mg/P, = 1.8050 — 0.4904 w — 0.5747 (Y4 Yw) + 0.008083 PI
—0.5123 P,y + 0.2191 (U/ P,) — 0.6401 (c4/ P,)

—0.0009399 (6/P,) ®)

The R? and F values for the MRM improved to 0.4357 and

165.88, respectively, which is a significant improvement over SBMs.
These values are in agreements with Carmichael and Stuart [28] and
indicate the importance of the size of the database.
Fig. 2 shows a comparison between experimental and predicted
Mg/P, values for this model. It is evident that the level of scatter in
data points reduced significantly for this model as compared to
SBM. The trend of the behavior of specimen MA-3B, NO-7A, and
0S-1B is the same as that observed for SBM predictions. Hence
similar reasons, as mentioned in the preceding section, can be used
to justify this prediction. Also, it is evident that the predicted values
are closer to the equality line when the Mg/P, values are less than
1,000. This observation may be due to the distribution of dataset.
Only 140 Mg/P, values out of 1512 Mg/P, values (approximately
9%) are in the upper range of 1,000. The remaining 91% of the
Mg/P, values for this study are in the lower range of the
development dataset. As a result lower order MRMSs appear to
exhibit difficulty in back-predicting a majority of the resilient
modulus values in the dataset that are in the lower range of the
Mg/P, values [24, 27, 29].

Polynomial Model (PM)

A polynomial model (PM) includes the basic components of a MRM
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Fig. 2. Comparison of Experimental and Predicted Mg/P, for

Development Dataset: Multiple Regression Model.

with the addition of higher order effects for the independent
variables. Although a second order model may be adequate for
many problems, a general polynomial model can have higher than
second order terms [23, 28]. In polynomial regression, higher order
terms are added to the model to determine if they increase the
associated R? significantly [24, 29, 30]. However, in most cases,
orders of PMs greater than three are not practical [30].

Using the polynomial modeling option in Statistica 7.1, the
resulting second order PM is given by the following equation:

Mg/P, = 15.8002 + 2.9994 w — 7.4142 w? — 18.3291 (YalYw) +
5.4596 (Yalyw)? + 0.02191 PI —0.0003142 PI? — 0.3705
Pyo —0.009229 P2+ 0.2628 (UJ/P,) -0.01050(Uy/
P,)? —2.0332(c4/ P) +1.62950(c4/ P,) % -0.01181 (6/P,) +
0.004735(6/P,)° )

The R? and F values for this model were found to be 0.4858 and
101.02, respectively. These values were better than those of the
MRM (0.4357 for R* and 165.88 for F value). To examine if a
higher order model was desired, a third order polynomial regression
model was developed for the same development dataset. The R? and
F values for the third order polynomial model changed to 0.4101
and 254.75, respectively. Specifically, the R® value for the third
order polynomial regression model was worse than the
corresponding values for both the multiple regression and the
second order polynomial regression models. Also, the F value
increased from the second order to the third order polynomial
regression model indicating that the second order PM was a better
model [30, 31]. Fig. 3 presents a comparison of experimental and
the Mr/P, values back-predicted by the second order polynomial
model. As seen for the other statistical models in the preceding
sections, prediction for specimen MA-3B appears to be the worst,
while the prediction for specimen NO-7A appears to be the best.
Prediction for the third specimen OS-1B appears to be intermediate.

Factorial Model (FM)

Vol.1 No. 3 Jul. 2008



2.5
R2=(.4858
R=0.6970 Equality Line
2.0
: Y
% e
& oo 50 L3048 & . MA
= ° a (R °&
E 0 9o, & 8 &9 °
S 1.0 0 28,00,
Bl R Rt ¥o0e o og |
£ - X 5 oo’ e 4%
- L3 o, o8 o
° 0 °
& A poﬁ; ceo % %
98 foog v’ o
0.5 1 ®-ou
N/ o9 o
3 0o o
o Vo A MA-3B
:° O NO-7A
@08-1B
0.0 f
0.0 0.5 1.0 1.5 2.0 25

Experimental Mg/P, (x 10%)

Fig. 3. Comparison of Experimental and Predicted Mg/P, for
Development Dataset: Polynomial Model.
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Fig. 4. Comparison of Experimental and Predicted Mg/P, for
Development Dataset: Factorial Model.

Similar to the polynomial model, a factorial model (FM) also
includes the components of a MRM. However, instead of
considering higher order effects of the independent variables, it
accounts for interactions among different variables in the model.
Different levels of interactions may be incorporated such as
interactions between two variables, among three variables, and so
on (i.e. wxys, PIxUxog, wxy;xPIxogx0, etc.). A full-factorial
regression model consists of all possible products of the
independent variables. Moreover, a factorial regression model can
be fractional (i.e., fractional exponent) (see e.g., [24, 29]).

A full-factorial model is used in the present study. With seven
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independent variables and all possible products of the independent
variables, the FM is a long equation with 128 terms. All the
regression constants for this model were determined using Statistica
7.1. The resulting equation of the FM is presented in Appendix.
The R? and F values for the FM were 0.6595 and 23.74, respectively.
The R? is significantly higher than those for the previous models
(0.4858). Significant observation was also made by the decrease of
the F value from 101.02 for PM to 23.74 for FM. Fig. 4 shows a plot
of experimental versus predicted Mgr/P, values and a comparison of
the predicted My values against deviatoric stress for specimens
MA-3B, NO-7A, and OS-1B for FM. As expected, the FM predicted
the resilient modulus values of specimen NO-7A very closely, while
the prediction for specimen MA-3B is much worse. Furthermore,
because of the improvement in R?and F values both the goodness of
fit of the model and the significance model the observations between
the experimental and predicted values are closer. It may therefore be
assumed at this point that since the F-value is 23.74 and it is the
lowest F value, the FM is the most significant statistical model for
the development dataset.

Other Models

Other complex regression models, such as separate slope, mixture
surface, and homogeneity of slope models were also considered in
the present study (Table 4). Separate slope method is used to model
the influence of the predictors while mixture surface designs are
identical to factorial regression designs. In general, homogeneity of
slope models is used to test the whether the predictors interact in
influencing responses. Even though the R? of these models
increased to as high as 0.9430, the F values also increased indicating
that these complex models were not significant for the development
dataset.

Evaluation of Models

Based on the R? and F values for the evaluation dataset (Table 4),
the SBM performs the worst; the FM performs the best while MRM
and PM are intermediate. Furthermore, since the second order PM is
a special case of MRMs and it performs better than the MRM, the
two statistical models considered for further evaluation are the
second order PM and the full FM.

Furthermore, the evaluation dataset were separated into soils from
Woodward County and Rogers County. Separate comparisons were
made for the Woodward County soils (WOE-4B) and the Rogers
County soils (ROE-20B), and a comparison was made for both
counties together (henceforth called “combined evaluation dataset”).
This provides different views on the prediction quality and the
importance of datasets on statistical analysis [24, 29]. Additionally,
a comparison was made between the differences in the R? values of
the development dataset and the evaluation dataset.

Evaluation of Factorial Model

The R? value of the combined evaluation dataset was only 0.3634.
Fig. 5 shows a comparison of the experimental and predicted Mg/P,
values for the combined evaluation dataset. Even though the overall
R? value for the development dataset was 0.6595, it dropped
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Table 5. Summary of the Statistical Modeling Results Using
Evaluation Dataset.

Statistical Combined ~ "Woodward  Rogers
County County

Model R R R
Stress-Based 0.3569 0.5776 0.3666
Multiple Regression  0.5403 0.8077 0.5370
Polynomial 0.5200 0.6212 0.5523
Factorial 0.3634 0.0962 0.4021

significantly to 0.3634 for the evaluation dataset (Table 5). The soils
from Woodward County (WOE-4B) have the worst predictions among
all the statistical models with a R? value of 0.0962. The full FM
considered here contains 128 terms in the function and it may be
considered as the most complex function among the four statistical
models. Therefore, it is possible that the FM over-fitted the
development dataset and caused a poor prediction in the evaluation
dataset [24, 32]. In the case of present dataset, it appears that the full
FM has created a condition known as too much wiggle [30, 31]. Too
much wiggle occurs when the equation has too many terms and tries
to fit to as many data point as possible. The percent difference in the
R? between the development dataset and the Woodward County and
Rogers County evaluation datasets are 85% and 39%, respectively.

Evaluation of Second Order Polynomial Model

The second order PM predicted the Mg/P, values with an R? value
of 0.5200. A plot of the experimental and predicted Mg/P, values is
given in Fig. 6. The results show that the Woodward County
(WOE-4B) and the Rogers County soils (ROE-20B) have R? values
of 0.6212 and 0.5523, respectively. The R? values for Woodward
and Rogers Counties were approximately 27% and 6.2% higher than
the R? value for the development dataset. This indicates that the second
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order PM is capable of predicting the Mg values of the Woodward
and Rogers County soils reasonably well, as compared to other
models.

Summary and Conclusions

Several statistical models were developed in this study. These
models included: stress-based, multiple regression, polynomial, and
factorial. Based on the R?and F values, the second order polynomial
and factorial models were further considered for the evaluation
dataset. An evaluation of the two models indicated that for the
combined development and evaluation datasets a second order
polynomial is a good statistical model for evaluating My from the
selected routinely determined properties.

The following conclusions drawn from the present study were
summarized below:

1. The stress-based model was found to have a low R? value
(0.3226), with significant scatters in the back-prediction of the
development dataset. The F value for this model was found to
be 253.37, indicating that a more complex model may be
needed in correlating My with the selected model parameters.

2. The R? and F values for the multiple linear regression model
were found to be 0.4357 and 165.88, respectively, indicating a
significant improvement over the stress-based model.

3. A second order polynomial multiple regression model was
developed for the development dataset. The R? and F values
for this model were found to be 0.4858 and 101.02,
respectively. These values indicate a slight improvement over
the multiple linear regression model. Although the effect of
this improvement was not visually noticeable for the overall
development dataset, the improvement was evident through the
improvement in the R? values for the evaluation dataset.

4. One of the most complicated models considered in this study
was a full factorial model. This model had 128 terms, and the
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R? and F values for the development dataset was found to be
0.6595 and 23.74, respectively. Based on these values and not
considering the evaluation dataset, this model appeared to be
the best statistical model.

Based on the R? and F values second order polynomial and
factorial model were selected for further evaluation using the
evaluation dataset. Factorial model showed the worst
predictions for soils from Woodward County with a R? value of
0.0962.

Second order polynomial showed the R? values for the
evaluation dataset (Roger County (0.5523), Woodward County
(0.6212), and combined dataset (0.5200)) were relatively high,
indicating that this model is comparatively a good model for
the combined datasets (development and evaluation).

The second order polynomial model developed in this study is
expected to be useful in the Level 2 and Level 3 designs of
pavements in Oklahoma.
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