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Forecasting Pavement Remaining Service Life with Limited Causal Data 
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─────────────────────────────────────────────────────── 
Abstract: Assessment of pavement remaining service life assists decision making on pavement maintenance and rehabilitation (M&R) 
such that proper M&R actions can be selected and scheduled to optimize the use of resources over the life cycles of pavements. In this 
paper, a pavement remaining service life model was developed dealing with the limited causal data present in the pavement management 
system databases. The model achieves this by including the current pavement condition rating in the model specification and considering 
the boundary conditions of the pavement deterioration process. Empirical results of model estimation and verification are presented in the 
context of the Florida pavement condition data sets. 
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Introduction 12 

 
Knowledge of pavement remaining service life (RSL) assists 
highway agencies in identifying maintenance and rehabilitation 
(M&R) needs and the required budget and resources and as well as 
performing proactive planning for the administered roadway 
networks. Pavement RSL can be defined as the extent of useful life 
remaining in pavements - in terms of years or equivalent single axle 
loads (ESALs) - with respect to a failure threshold. Pavement failure 
is usually categorized as either structural or functional. Functional 
failure is normally defined as the undesirable condition of certain 
distress types, such as surface cracks or roughness. Structural failure, 
on the other hand, is normally based on fatigue due to repetitive 
loading. Given the pavement surface condition data routinely 
collected and stored in a pavement management system (PMS) 
database, the functional failure approach appears to be more 
attractive for pavement management at the network level. The 
structural failure approach, which requires the effective thickness or 
modulus obtained from in-situ measurements, is more suitable for 
rehabilitation/reconstruction design of pavements at the project 
level. 

Many studies have been undertaken to estimate pavement life or 
pavement remaining life. AASHTO [1] described several 
approaches for estimating pavement remaining life both structurally 
and functionally, solely based on traffic or time. Some studies were 
based on falling weight deflectometer (FWD) measurements. Park 
and Kim [2] developed prediction methods for the remaining life of 
flexible pavements using FWD multiload-level deflections. The 
procedure involves using both pavement response models and 
pavement performance models. The former were used to predict 
critical pavement response from surface deflections and deflection 
basin parameters; the latter were used to model the relationships 
between critical pavement responses and actual pavement 
performance. Finally, data from the Long-Term Pavement 
Performance database were used to verify the proposed procedure. 
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In a more recent study, Werkmeister and Alabaster [3] proposed a 
practical method to estimate the remaining pavement life of 
low-volume roads using the results of FWD measurements. The 
method was developed using observations from accelerated 
pavement tests and field results from Transit New Zealand’s asset 
management database. The models, although straightforward, are 
more applicable to the project-level analysis given the excessive 
costs associated with data acquisition. At the network level, methods 
based on historic pavement condition data routinely collected as part 
of a PMS appear to be more appropriate. In this regard, many 
researchers [4-6] have developed pavement performance models 
with respect to certain pavement condition indices and used them to 
predict pavement life or remaining life in conjunction with a 
pavement condition threshold value that triggers necessary 
maintenance or rehabilitation actions. 

Instead of relying on pavement performance models that predict 
the progression of adverse pavement conditions, some research has 
focused on developing models to directly predict pavement life or 
remaining life. In this context, Vepa et al. [7] proposed a simple 
procedure based on survivor curves. The concept of using survivor 
curves is quite straightforward and easy to implement in the current 
PMS database setting. The disadvantage of the procedure is that 
groups of curves have to be developed to account for the variation 
associated with geographical areas, materials, construction 
procedures, and so forth. Furthermore, the predictive accuracy of 
survivor curves might be debatable as rough classification is often 
made to ensure adequate data in each category for developing 
survivor curves. In another study, Al-Suleiman and Shiyab [8] 
presented an approach based on inverting roughness performance 
models. Specifically, the functions describing roughness over time 
were inverted to predict the time needed to reach a given failure 
value of the International Roughness Index (IRI). Given the current 
age of a pavement, pavement remaining life can be calculated as the 
estimated pavement life less the current age of the pavement. As the 
procedure is based solely on roughness data, the same restriction 
applies that different curves have to be developed for groups of 
pavements with similar characteristics. 

Alternatively, a new breed of models, duration models, has been 
explored to handle the effects of multiple explanatory variables on 
pavement life or failure time [9-11]. These models represent a 
probabilistic approach, where the duration (pavement life or time to 
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Table 2. Estimation Results of Specification 1. 

Weibull Loglogistic Lognormal 
Variable 

Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic 

Constant 0.5982 5.815 -0.7806 -6.773 -0.9795 -8.319 
PCR 0.3851 45.472 0.5578 65.397 0.5704 63.495 
Cycle2 -0.2498 -22.913 -0.3045 -23.789 -0.2841 -21.578 
Cycle3 -0.4429 -23.166 -0.4287 -19.124 -0.4089 -16.584 
Cycle4 -0.5445 -8.521 -0.5083 -7.796 -0.5057 -6.814 
logADT -0.3537 -16.837 -0.4011 -17.049 -0.3849 -16.041 
TP -1.4991 -21.200 -2.0188 -21.861 -1.9434 -20.097 
Type 0.2652 13.689 0.3018 14.401 0.2831 13.473 

Scale Parameter (p) 1.8517 127.617 2.818 106.338 1.6084 133.811 

log L -9528.00 -9665.73 -9572.80 
AIC 19074.01 19349.46 19163.6 

No.of obs. = 10144 

 
Table 3. Estimation Results of Specification 2. 

Weibull Loglogistic Lognormal 
Variable  

Coefficient T-statistic Coefficient T-statistic Coefficient T-statistic 

Constant 3.4428 44.52 3.3878 39.468 3.3391 37.345 
ln[PCR(t0) - PCR] 0.3455 69.706 0.5065 77.039 0.4861 68.62 
Cycle2 -0.2333 -22.784 -0.2741 -22.055 -0.2585 -20.084 
Cycle3 -0.4211 -22.147 -0.3947 -18.260 -0.3761 -15.758 
Cycle4 -0.5021 -7.741 -0.4383 -6.773 -0.4247 -5.654 
logADT -0.3263 -15.851 -0.3748 -16.521 -0.3714 -15.746 
TP -1.3798 -19.481 -1.7520 -19.488 -1.7395 -18.239 
Type 0.2599 13.706 0.3036 14.638 0.2954 13.819 

Scale parameter (p) 1.889 131.18 2.9268 111.454 1.6396 141.832 

log L -9294.43 -9349.58 -9378.09 
AIC 18606.85 18717.16 18774.17 

No.of obs. = 10144 

 
 
where, c = the number of covariates and p = the number of 
structural parameters. 

The idea of the AIC is to “reward” parsimonious models by 
penalizing the log-likelihood for the parameters estimated. As seen, 
replacing PCR(t0) with ln[PCR(t0)-PCRf] improved data fitting, 
shown as the reduced AIC values. In other words, given the same 
number of covariates and structural parameters used in both model 
specifications, Specification 2 explains more variance in the data set 
than Specification 1. Thus, Specification 2 is preferred to 
Specification 1. Among different hazard models under Specification 
2, Weibull provides the best fitting to the data and thus is selected as 
the “best” model. This may be explained that the failure hazard of 
the pavement overall condition (PCR) follows a monotonically 
increasing trend, which is better modeled by the Weibull 
distribution. 

Furthermore, the signs and magnitude of the explanatory 
variables are consistent between the two link function specifications 
and across different hazard functions. All variables are significant at 
the 0.01 level. The signs of the explanatory variables are intuitively 
expected. The positive signs of the coefficients for the variables 
ln[PCR(t0)-PCRf], PCR, and pavement type imply that pavements in 
worse condition have a higher failure hazard than those in better 
condition and rigid pavements have a lower failure hazard compared 

to flexible pavements. In contrast, negative signs are associated with 
logADT, TP, and each additional rehabilitation cycle. They indicate 
that higher traffic loading contributes to a faster deterioration of 
pavements. Compared with Cycle 1, which reflects the as-built 
pavement condition, failure hazard increases with each additional 
cycle as seen by the increase in the magnitude of the coefficients. 
This could be attributable to the underlying structural damages 
accumulated with each additional cycle. 
 
Model Evaluation 
 
Parametric Analyses 
 
To illustrate the impacts of the explanatory variables on pavement 
failure hazard, a parametric analysis was undertaken for the “best” 
model: the link function of Specification 2 with Weibull distribution. 
For this evaluation, each variable was analyzed individually by 
holding the other variables constant, shown in Figs. 1 to 5. 

As shown in Fig. 1, four distinct curves were obtained for the 
four pavement cycles modeled with higher hazard associated with 
higher cycles and the hazard difference between different cycles 
increases with time. Figs. 2 and 3 show that higher traffic volume 
and truck percentage result in higher failure hazard because of the  
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Fig. 1. The Effects of Pavement Cycles on Pavement Failure 
Hazard. 
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Fig. 2. The Effects of ADT on Pavement Failure Hazard. 
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Fig. 3. The Effects of Truck Percentage on Pavement Failure 

Hazard. 

 

higher traffic loading implied. Fig. 4 indicates that flexible 

pavements have a higher failure hazard than rigid pavements and 

the hazard difference increases with time. Finally, the hazard 

function was also plotted against the current pavement condition 

rating (PCR) in Fig. 5, indicating a higher failure hazard for worse 

pavement conditions (lower PCR) and the hazard increases 

dramatically as the pavement approaches the failure condition. 
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Fig. 4. The Effects of Pavement Types on Pavement Failure Hazard. 
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Fig. 5. Pavement Failure Hazard Versus Current PCR. 
 
Model Verification 
 
The “best” model (the link function of Specification 2 with Weibull 
distribution) was further assessed using a separate data set, which 
was set aside initially for the purpose of verification. The objective 
of this assessment is to see if the model developed with the 
estimation data set performs well with the verification data set. For 
this purpose, the survival curve predicted by the model was 
compared with that derived from the verification data set, shown in 
Figs. 6 and 7 for flexible pavements and rigid pavements, 
respectively. 

As seen, the survival curves fit well graphically. To statistically 
test if the two curves are same, a special test proposed by Lin and 
Wang [13] was used. This test overcomes the weakness of 
commonly-used log-rank and Wilcoxon tests that may have a 
significant loss of statistical testing power when two survival curves 
cross, which is our case. The new statistic is constructed based on a 
standardized summation of the squared differences between the 
number of observed failures and the number of expected failures. 
This new statistic follows a standard normal distribution. With the 
survival curves presented in Figs. 6 and 7, the values of the test 
statistic were computed to be 0.0759 (P-value = 0.47) for flexible 
pavements and 0.0245 (P-value = 0.49) for rigid pavements. 
Therefore, the null hypothesis that there is no difference between 
the two survival curves cannot be rejected. 
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Fig. 6. Comparison of Survival Curves (Flexible Pavements). 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Time (year)

Model

Verification Data

 
Fig. 7. Comparison of Survival Curves (Rigid Pavements). 
 
Concluding Remarks 

 
In summary, development of accurate and reliable remaining-life 
prediction models has been a challenging task due to the complexity 
and uncertainty associated with the pavement deterioration process 
and a multitude of factors involved. This paper presents a special 
model specification to deal with the limited causal data present in 
the existing PMS databases. The specialty of the proposed model 
lies in its use of current pavement condition rating as a surrogate for 
relevant pavement structural condition and the consideration of 
specific boundary conditions associated with pavement deterioration 
process. Empirical results of model estimation and verification show 
that the proposed model specification improves the model fitting 
and thus increases the model explanatory power. 

The paper focuses on modeling pavement remaining service life 
with limited pavement structural data. However, it is strongly 
recommended that structure-specific information be included as it 
becomes available in PMS databases through emerging pavement 
survey technologies.  Furthermore, use of current time data, such 
as annual daily traffic and truck percentages, as predictors is bound 
to introduce errors as future pavement deterioration is generally 

governed by future traffic demand. These errors are regarded as 
random because future traffic volumes and truck percentages are 
unknown. As such, the estimated model parameters are intended to 
capture the pavement deterioration under established traffic patterns. 
The model may not be adequate when there are significant errors in 
traffic demand projection. 
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