Technical Paper

ISSN 1997-1400 Int. J. Pavement Res. Technol. 4(6):356-364
Copyright @ Chinese Society of Pavement Engineering

A New Method to Characterize the Stone-Stone Contact Degree of Asphalt
Mixture Using X-ray Computed Tomography Images

Yuehua Duan'" 2, Xiaoning Zhang', Zhi Li', and Duanyi Wang'

Abstract: Until now, voids in the Coarse Aggregate (VCA) parameter were used to judge whether the coarse aggregate skeleton is
formed in asphalt mixtures. However, this method has several shortcomings and deficiencies. In this paper, the X-ray Computed
Tomography (CT) is used to obtain two-dimensional (2D) images through a series of digital image processing methods to separate the
aggregates successfully. A contact searching method was established to find all the contacting pixels surrounding each particle. All pixels
found were stored and analyzed. The contact degree changes, along with the different depths of the specimen, and the contacting pixel
values calculated by the algorithm concentrate to approximately 0-20 pixels, which equals about 0-2 mm. Three quantitative indicators,
C1, C2, and C3, were established. Their input data were fitted by 4 different probability density functions (PDFs): Normal distribution,
Lognormal distribution, Gamma distribution, and Weibull distribution. The goodness of the fit was simultaneously tested through two
different formal statistical tests (Kolmogorov-Smirnov and Chi-square) to provide mathematical support. Finally, the Lognormal PDF
was found to be the most suitable for describing the input data distributions, and C1 was recommended as the quantitative indicator for

the assessment of stone-stone contact degree.
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Introduction

Rutting is one of the major causes of damage to asphalt pavement.
Many local and foreign road researchers have carried out numerous
studies concerning the rutting of asphalt pavement. Different types
of modified asphalt have been adopted to improve the road
performance of asphalt mixture. In addition, different types of
pavement structure design methods have been invented and put into
practice successfully, such as Stone Matrix Asphalt (SMA) and
Coarse Aggregate Void Filling method (CAVF) [1].The key point
of these methods lies in the formation of the coarse aggregate
skeleton.

All of these methods have a very important parameter— voids in
the Coarse Aggregate (VCA). The voids in the Coarse Aggregate of
Asphalt Mixture (VCA4,,,) is defined as below:

vca,, = [l—y—fomJXIOO (1)
Ya

where :

P~ the proportion of particles (%) that is greater than 4.75 mm.

7 s= the bulk relative density of asphalt mixture specimen.

7 .« = the average bulk relative density of the coarse aggregate
skeleton.

The voids in Coarse Aggregate Under Tamping State (VCAyy.) is
defined as Eq. (2):
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vca,, = [ - QJ x100 @)

where:
7, = the tamping bulk relative density.

And Eq. (3) was used to judge whether the skeleton of coarse
aggregate is formed:

VCA,, <VCA, 3)

From Egs. (1) and (2), it can be seen that the volume parameters
are calculated by bulk relative density. In other words, one cannot
acquire the volume parameters directly. However, the whole
experiment and calculation process do not specifically take the
absorption of asphalt by aggregates voids into consideration,
inevitably resulting in deviations [2].. Although the result is not very
reliable, Eq. (3) is currently the only accepted formula to judge
whether the stone-stone skeleton is formed.

Using X-ray Computed Tomography (CT), one can obtain the
internal microstructure of asphalt mixture from the two-dimensional
(2D) images, which have rich details. Many scholars have
completed important academic work using this non-destructive
method [3-12]. However, for this research on the coarse aggregates
of asphalt mixture, the emphasis rests on the internal particles
morphology. Garboczi [13] describes a mathematical procedure
using spherical harmonic functions to characterize the concrete
aggregate particles and other particles of the same nature. Erdogan
et al. [14] compares shape data on several different kinds of coarse
aggregates and illustrates potential mathematical shape analyses
made possible by spherical harmonic information. Taylor et al. [15]
discusses some of the properties of irregular particles, including
volume, density and surface areas, while studying the rocks’ shapes
by combining three dimensions with their volumes and surface areas.
Wang et al. [16] reconstructed a three-dimensional digital
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Table 1. Aggregate Gradation

Duan et al.

Aggregate Gradation

Cumulative Percent Passing by Weight (Square Openings, mm)
16 13.2 9.5 4.75

2.36 1.18 0.6 0.3 0.15 0.075

AC-13 100 95 70 48

36 24 18 12 8 4

Note: AC-13 is from Specifications of Asphalt Concrete Pavement Design for Highway used in China and represents specific aggregate
gradation type, among which the last number stands for the nominal maximum aggregate size of asphalt mixtures.

(a) Original Image
Fig. 1. Segmentation Result Map

(b) After Segmentation

representation of individual particles in a granular system and
presented the quantities needed for subsequent simulation of particle
behavior, including the volume and the momentum of inertia of
each particle. Masad et al. [17] put forward that the X-ray CT
images, in conjunction with spherical harmonic analysis, were a
powerful technique in representing and reconstructing
three-dimensional images of particles, which can be used to
mathematically represent the shape of particles in computational
models. However, there has yet been no special research on the
aggregates’ contact status from published research results.

Using X-ray CT images, the positional relationship from particle
to particle in asphalt mixtures can be easily observed. In this paper,
digital image processing methods were adopted to deal with the 2D
images obtained by X-ray CT with each 2D image divided into four
components: background, pores, mastics and aggregates. Then the
adhesion particles were separated by a specific digital image
processing method. After that, the contact search method was used
to find all the contacting pixels surrounding each single particle. All
contacting pixels found were recorded and then analyzed carefully
from different angels. Finally, three quantitative indicators were
tried to be established, and their input data were tested by the fitting
process. Finally, the most appropriate one was recommended

Objectives

The objectives of this study are 1.) to find a suitable method that can
reveal the inherent laws of aggregate contact status in asphalt
mixture based on digital image processing methods using X-ray CT
images and 2.) to establish a quantitative indicator to characterize
the stone-stone contact degree.

Asphalt Mixtures
Scanning

Specimen Preparation and

In this research, the granite is used as aggregate particles and Shell
#70 petroleum asphalt as binder. Meanwhile, AC-13 was selected as
the asphalt mixtures specimen. Table 1 gives the aggregates’
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gradation. With the optimum asphalt content, the corresponding
cylindrical specimen was compacted by the Marshall compactor in
the laboratory.

The 225 kV industrial CT assembled by YXLON Company was
used to acquire the scanning images, and the VGStudio MAX 2.0
software was used to realize the three-dimensional (3D)
visualization. After the 3D reconstruction process, a total of 640 2D
slice images were received, and the resolution in the X-Y plane and
along the Z axis are the same 0.10 mm/pixel.

Digital Image Processing
Segmentation Process

To acquire good segmentation effect on these 2D images, some
original image pre-processing work must be done. CT scan images
are pseudo-color and should first be transformed into gray scale.
The original images contain a lot of noise, so the adaptive Gaussian
filter was selected to deal with the original images. The
morphological open operation was implemented to remove the
bright details smaller than the structural element while completely
deleting target regions that cannot contain the structural element,
smoothing contours of the objects, disconnecting the narrow
connection, removing the small prominent parts, and finally filling
tiny holes within aggregates. All procedures above were executed
using MATLAB.

The Maximum Classes Square Error Method (OTSU method)
was proposed by Japanese scholar Otsu, and it is a self adaptive
threshold determining method [18].

Suppose a gray image’s total average gray value can be expressed
as Eq. (4):

U=W, XU, +W, XU, @)

where:
u = the image's total average gray value.
wy= the foreground proportion (%).
u,= the foreground average gray value.
w = the background proportion (%).
u;= the background average gray value.
The classes’ square error g can be expressed as Eq. (5):

g =W, X uo_u)2+wlx(u1_u)2 )

Suppose ¢ is the foreground and background segmentation
threshold gray value, then the ¢, value, which makes the g achieve
the greatest value, is the optimal segmentation value.

Here, the two classification strategy was used twice based on the
OTSU method to separate each 2D slice image into four different
components: background, aggregates, mastics, and voids. Fig. 1
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(a) Before Processing
Fig. 2. Adhesion Treatment Results Map

(b) After Processing

l an effective
contacting pixel

cross-section contour pixel cross-section contour pixel

(a) No Contacting Pixel (b) One Contacting Pixel

Fig. 3. Contact Searching Diagram
shows the final segmentation result.
Adhesion Problem

After careful observations of Fig. 1(b), the aggregates were found to
be not totally separated into single particle as completely as what
can be seen in Fig. 2(a). The black circles indicate an adhesion
problem. The reasons are complex. Generally speaking, it is affected
by the original 2D images’ quality.

The adhesion point bonds different particles together, making it
impossible to be analyzed as a single entity. Previous researchers
frequently used Photoshop, Image-Pro (software name), etc. to
separate the cohering pixels.

The digital image processing method was designed to deal with
this problem. There will be similar adhesion problems in the
complex cytological and histological images since the cells may
overlap and cluster strongly, making the segmented structures
deviate from the final quantification of features of single cells.
Scholars [19] have put forward an algorithm named the
Morphological Multiscale Decomposition (MSD) by which the cells
are separated from each other successfully. Here, the main idea of
the pseudo-code was cited, and according to the asphalt mixtures’
2D image features, the code was adjusted and then executed by
MATLAB. Fig. 2(b) is the final result map. From the image, it can
be seen that the particles sticking together are completely separated
one by one.

Judgment of Stone-Stone Contact and Fundamental
Contact Status Analysis

It is the asphalt film thickness concept that should be first
considered in this research. If the aggregate particles are fully in
contact with each other, the edges should be very close. Elseifi et al.
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used the Scanning Electron Microscopy (SEM) to observe the
microstructure of asphalt mixtures, showing that asphalt binder
films surrounding large aggregates actually consist of asphalt mastic
films. These mastic films are highly irregular in shape and have a
thickness of greater than 100 um of the considered mixture [20].
According to this conclusion, if two adjacent aggregates are fully in
contact, the particles boundary interval can be defined as no more
than 2 pixels being consistent with the actual resolution of the
images.

Contact Searching Method Design

Design a 5x5 square window and take the particles boundaries as a
search path to carry out a complete perimeter search with the pixel
point representing the aggregate boundary, which is always located
in the center of the window. During the search process, if other
pixels are found in the window, the stone-stone contact was deemed
to occur, and the pixels will be recorded. Meanwhile, the following
constraint conditions should be determined. Any pixel found in the
square window that belongs to the particle itself should not be
misjudged as an effective contacting pixel. During the search
process, any repeated pixels found when the square window moves
along the boundary of single particle should not be recorded
repeatedly. All contacting pixel data were stored in the cell unit
form by MATLAB. The contact search diagram can be seen in Fig.
3.

Since the slice image’s resolution was very high, the X-Y plane
and the Z axis pixel are all 0.10mm/pixel, making the spacing
between two adjacent layers very small (about 0.10 mm). It can be
deduced that any effective particle-to-particle contact will be
reflected in the two-dimensional slice images.

According to the methods mentioned above, the total of 640 2D
images obtained by X-Ray CT implemented the search process
sequentially from top to bottom. The basic configuration for the
computer is as follows: Pentium Dual-Core CPU 2.5 GHz, 2 GB
memory, and 512 MB Graphics Memory. The average processing
time for a single slice image was about 3.5-5 minutes, and the total
time needed was about 40 hours. Since the search and storing
process was limited by the ordinary computer’s memory capacity,
the time consumed was a bit too long. However, the efficiency
would improve greatly by using a more advanced computer.

Data Collection and Fundamental Analysis of Contact
State

The raw data collected for this research include every aggregate
perimeter, area, total number of particles, total contacting points and
their corresponding pixels found in each 2D image.

Through the above search process, a total of 16,984 effective
contact points were found in the 640 2D images with the minimum
value of a single point’s contact searching pixel being 1, which
corresponds to 0.1 mm. The maximum value of a single point’s
contact searching pixel is 145, which corresponds to an actual size
14.5 mm. The maximum value fits the maximum size of aggregates
of AC-13 asphalt mixture very well, proving the validity of the
contact searching process indirectly.

How the amount of effective contact points changed along the 2D
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sections can be seen in Fig. 4(a). There are more effective
contacting points at the top 6.5 mm and at the bottom 11 mm than at
the middle part of the specimen. It can be deduced that since the top
part is under the drop hammer and the bottom part is directly in
contact with the steel pad, it would be more effective if contact
points were searched out by the algorithm. However, from Fig. 4(b),
the particle amount in each slice image along the 2D sections has no
clear rule at all.

All the pixel values corresponding to each contact point found in
the 640 sections were put together, and then the frequency
histogram was drawn at the interval of 10 pixels (Fig. 5).

Vol.4 No.6 Nov. 2011

Duan et al.

Fig. 5 shows that the pixel distribution basically concentrates
around the range of 0-20 pixels (the actual length should be 0-2 mm)
with a cumulative distribution frequency of 69.5%. The figure
explains that most contact points in this AC-13 asphalt mixture with
floating and compact structure are point contact, which shows a
small value of contacting pixels. It can be deduced that if the
aggregate has a very regular particle shape and the coarse aggregate
skeleton forms very well, there should be more surface contact
reflecting the general improvement of contact pixel value in 2D
slice images. This means the pixel distribution should have a very
different form than what we see in Fig. 5.

Stone-Stone Contact Degree Quantitative Indicator

In order to quantify the contact degree of aggregates, there wouldn’t
be much practical value in only making statistics of contact pixels,
but one can give an objective assessment on the contact degree by
combining the particle distribution and geometry. Here, we collect
the total amount of particles, total amount of pixels on behalf of the
aggregates’ perimeter, and total amount of pixels on behalf of the
aggregates’ area in each 2D slice image. Then, we compare the
different above values to the contact pixels in the same 2D image to
determine the equations of contact degree as follows:

N

Cl — pixels (6)
Gtatal
N,

C2=—2= ™
Ctotal
N .

C3= Aprxelx (8)
total

where:

Npixeis- the total amount of contact pixels in each slice image.

G0 = the total amount of particles in the same slice image.

Cor = the total amount of pixels on behalf of aggregates’ perimeter
in the same slice image.

Ajo = the total amount of pixels on behalf of aggregates’ area in the
same slice image.

As can be seen from Fig. 6, C1, C2, and C3 have similar variation
rules along the 2D slice top to bottom just like the effective contact
points in Fig. 4(a).

Fitting Distributions of Quantitative Indicator

This paper selected several probability distributions to analyze the
indicators. Probability distributions have been used by numerous
researchers in the modeling of construction activities. Generally,
there are two ways to achieve this [21]. They include a.) using the
collected data to define an empirical distribution and b) fitting a
theoretical distribution to the collected data. We chose the latter
manner. The steps to fit theoretical probability distributions to the
input data are:

1. Create input data histogram;

2. Select probability distribution functions;
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3. Fit different distribution functions to the input data;
4. Assess the goodness of fit.

Creating Input Data Histogram

Histograms are applicable to continuous distribution and provide a
readily interpreted visual synopsis of the collected data. However,
there is debate regarding how many intervals are the most scientific.
Much research has been done on applying class interval rules, and
numerous views were proposed [21]. Montgomery and Runger [22]
put forward that intervals should be used in order to avoid
uninformative histograms between 5 to 20. Kottegoda and Rosso
[23] set a lower and upper bound for class interval quantity of 5 to
20, respectively. Neville and Kennedy [24] regarded 10 and 25 as
the lower and upper bounds, respectively. Law and Kelton [25]
proposed that a number of histograms should be produced according
to a number of different intervals, and the one that has the smoothest
shape should be selected. The authors compared the 8, 10, 12, and
14 class intervals.

Here, the range of contacting pixel values was broken up into 10
disjointed intervals, with all intervals having the same width A .
Taking the C1 values, for example, the minimum value of C1 is 1.33,
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and the maximum value of C1 is 9.81, so the interval is 0.85. For
J=1,2,...,10, let h; be the portion of x; that are in the jth interval, so
the function is defined as Eq. (9):

h.=h if Cl +(j-1)*A<x<Cl, +*A forj=1,2..,10 (9)

where:
x =the C1 value.

It is plotted as a function of C1, and the plot of # was a piecewise
constant just like Fig. 7.

Selecting Probability Distribution Functions (PDFs)

According to the histogram shape in Fig. 7, there are four different
probability distribution functions (PDF): Normal distribution,
Lognormal distribution, Gamma distribution and Weibull
distribution. These 4 PDFs were selected to fit the raw data of C1,
C2, and C3 simultaneously. The PDF of 4 different distributions can
be expressed as Egs. (10)-(13):

—(x-0)

Normal PDF: y = e > (10)

cV2m

where b is the mathematic expectation, and ¢ is the standard
deviation.

1 —(In x—b)2
202
e (11)

Lognormal PDF: y =
xeN2r

where b is the mean of random variable In(x), and ¢ is the standard
deviation of In(x).

b—)x°"e('b") (12)

Gamma PDF: y =
T'(e

where I is the Gamma function, b is the scale parameter, and ¢ is
the shape parameter.

c-1 c
Weibull PDF: y=%(%] exp|:— (%J } (13)

where b is the scale parameter, and c is the shape parameter.
Fitting different PDFs to the Input Data

The above 4 PDFs were fitted to the input data of C1, C2, and C3,
and the maximum likelihood estimation method (MLE) was used to
estimate parameter values of different PDFs. The likelihood
function can be expressed as Eq. (14):

L)= £, (x,)f.(x,)-1.(x,) (14)

where the MLE is defined to be the value of @ that
maximizes L(H)over all permissible values of 6 .

The PDF can be calculated after the parameter values are
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estimated by MLE, and the PDF can be plotted as a function of X .
The PDF curve can be placed on top of the plot of the input data
histograms, as seen in Fig. 7.

Vol.4 No.6 Nov. 2011

Duan et al.

Assessment of Goodness of Fit

Although a visual assessment of the goodness of fit through
comparing the shape of the PDF with the shape of the histogram is
often the superior method [26], it is always subject and prone to
potential human error. Mathematical support for the assessment can
greatly improve confidence in the goodness of fit. Here, the
Kolmogorov-Smirnov test and the Chi-square test are utilized
together for assessment.

The Kolmogorov-Smirnov test compares the distribution of x
with the hypothesized continuous distribution [27]. The result value
of h is 1 if the null hypothesis can be rejected at the 5% significance
level, but the result value of h is 0 if the null hypothesis cannot be
rejected at the 5% significance level.

The Chi-square test performs a goodness of fit test on the default
null hypothesis that the data in vector x are a random sample from
an arbitrary continuous distribution [28]. The result value of h is 1 if
the null hypothesis can be rejected at the 5% significance level, but
it will reduce to 0 if the null hypothesis cannot be rejected at the 5%
significance level. Different from the Kolmogorov-Smirnov test, the
Chi-square test is performed by grouping the data into bins,
calculating the observed and expected counts for those bins, and
computing the chi-square test statistics.

Data Analysis and Results

The aim of the data analysis is to find the most appropriate PDF that
will best fit the input data of C1, C2, and C3. The plot of lognormal,
Weibull, gamma, and normal distributions are shown in Fig. 7,
demonstrating that the histograms all have 10 class intervals. From
the figure, it can be seen easily that C1, C2, and C3 data histograms
are all skewed to the right and have a right tail that swiftly falls in
probability. The 4 PDFs all bear some resemblance to the
underlying histograms, but they all over- or underestimate the
histograms in different parts, which will reduce the accuracy of the
analysis. It is difficult to determine which distribution is the best fit
simply by visual assessment, making the formal statistical tests very
important ~ in  providing  mathematical  support.  The
Kolmogorov-Smirnov test and Chi-square test results can be seen in
Table 2.

From Table 2, we can see the lognormal distribution is the only
PDF that passes all hypothesis tests at the 5% significance level
when fitted to the input data of C1, C2, and C3. The p values for the
Kolmogorov-Smirnov tests are 0.1772, 0.4549, and 0.8362,
respectively. For C2, and C3, the Gamma distribution also passes
the hypothesis test together with lognormal distribution at the 5%
significance level, and the p values for the Kolmogorov-Smirnov
tests are 0.0545 and 0.1499, respectively. The Chi-square test results
are consistent with the Kolmogorov-Smirnov tests. The lognormal
distribution passes all hypothesis tests at the 5% significance level,
and the Gamma distribution passes the tests for C2 and C3 data. The
respective p values for lognormal are 0.2916, 0.4990, and 0.4718,
while for gamma they are 0.1882, and 0.0687. The Weibull and
normal PDFs were ruled out for further consideration because they
did not pass the hypothesis tests.

The statistical values of the Kolmogorov-Smirnov test were
compared with those of the Chi-square test for the assessment of
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Table 2. Parameter Estimations and Results for the Kolmogorov-Smirnov Test and Chi-square Test
Data PDF Parameter Values Kolmogorov-Smimo.v Test Chi-square TesF 4
b C h p Statistical Value h p Statistical Value

Lognormal 1.343 0.357 0 0.1772 0.0432 0 0.2916 47.581

c1 Weibull 4.586 2.863 1 0.0000 0.1024 1 0.0000 149.162
Gamma 7.984 0.5115 1 0.0057 0.0674 1 0.0449 65.786

Normal 4.084 1.501 1 0.0000 0.1137 1 0.0000 160.193

Lognormal -3.711 0.3412 0 0.4549 0.03361 0 0.4990 43.358

o Weibull 0.0289 3.0508 1 0.0000 0.09272 1 0.0000 113.172
Gamma 8.816 0.0029 0 0.0545 0.05605 0 0.1882 57.549

Normal 0.0259 0.0089 1 0.0000 0.1008 1 0.0000 113.288

Lognormal -6.213 0.329 0 0.8362 0.0243 0 0.4718 42.988

c3 Weibull 0.0024 3.16 1 0.0002 0.0839 1 0.0000 126.997
Gamma 9.491 0.0002 0 0.1499 0.0447 0 0.0687 63.277

Normal 0.0021 0.0007 1 0.0001 0.0879 1 0.0000 114.467

goodness of fit. For C1, the lognormal PDF is the only suitable
distribution. For C2, the statistical value for lognormal PDF
(0.03361) is smaller than the gamma PDF value (0.05605) where
the Kolmogorov-Smirnov test is concerned. That is to say that with
regard to the goodness of fit for C2, the lognormal PDF is better
than the gamma PDF. For C3, the lognormal value (0.0243) is
smaller than the gamma value (0.0447). The Chi-square test
produces the same conclusions that the statistical values of
lognormal PDF are smaller than those of gamma PDF for C2 and
C3. Therefore, the lognormal distribution is considered the best PDF
for describing the input data of C1, C2, and C3.

From the above analysis, it can be seen that the data of C1, C2,
and C3 have very similar statistical distribution since they all fit the
lognormal distribution very well.

From the expressions of C1, C2, and C3, it can be seen that C1
can be interpreted as the average amount of contact pixels of a
single particle in each slice image. In comparison, C2 can be
interpreted as the average amount of contact pixels per perimeter
pixel unit of all particles in each slice image, and C3 can be
interpreted as the average amount of contact pixels per area pixel
unit of all particles in each slice image. It is clear that C1 is easier to
understand and has a more explicit physical meaning than C2 and
C3.

Moreover, in this example, the value of C1 varies from 1.33 to
9.81, the C2 value varies from 0.0086 to 0.0574, and the C3 value
varies from 0.00072 to 0.00465, enabling the C1 raw data to be
easier to record and to establish a statistical model.

In summary, C1 was recommended as the indicator reflecting the
stone-stone contact degree of asphalt mixture specimen within a
meso-scale.

The b and ¢ of lognormal PDF are the most important parameters,
with b being the mean of In(x), and ¢ being the standard deviation of
In(x). The b and ¢ values can be directly used to compare with other
specimens. Here, only one asphalt mixture specimen was scanned,
requiring a lot of follow-up work to verify the effectiveness of this
method.

Summary and Conclusion

A series of work for component segmentation, adhesive particle
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separation, contacting particle judgment, effective contact pixel
searching, and statistical analysis of input data were developed to
analyze the contact status of aggregates on asphalt mixture in a
non-destructive way by using X-ray computed tomography images.

From the 2D images, the positional relationship of different
particles can be clearly observed. Digital image processing methods
are very important in getting high quality images, and the process
can separate the aggregates from the complex asphalt mixture
successfully with a series of procedures. The contact searching
method can describe the contact degree of a single particle with
different surrounding particles in a digital way, by which “contact
searching pixels” data can be recorded and analyzed easily.

It will be statistically significant to use all 2D slice images
together for analysis instead of a single section. Through careful
data analysis, how the contact status changes along with different
depths of the specimen and how the main contact form changes
according to the pixel frequency histogram shape can be known.
Three alternative quantitative indicators, C1, C2, and C3, were
established and tested, and 4 different PDFs (Normal distribution,
Lognormal distribution, Gamma distribution, and Weibull
distribution) were fitted to the input data of C1, C2, and C3. After a
series of statistical analyses, Cl was considered to be the most
appropriate indicator that can assess the stone-stone contact degree
in a non-destructive way.

The traditional VCA method is considered manual work, so there
is the possibility of human error. Moreover, the volume parameters
can only be acquired directly by bulk relative density measurement,
and the density measurement process has its shortcomings which
can’t be avoided. The new method implements a totally digital way,
by which human errors will not appear. We can now not only know
the contact status along with the asphalt mixture specimen’s depth
but also easily compare the contact degree from specimen to
specimen by statistical analysis. Thus, the new method is a useful
approach to quantify the contact degree between aggregates in the
asphalt mixtures.

Future Work

Future work will focus on testing different asphalt mixtures to see
whether this indicator can apply to all kinds of cases. The data,
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especially the mean value and the standard deviation value, will be
compared with each other to judge whether this method can
effectively distinguish the different contact degree of different
asphalt mixtures and different compaction method. Moreover, the
data will be analyzed carefully before and after loading to explore
the indicator value changing rule.

In addition, future work will attempt to improve the search
algorithm from 2D to 3D based on the sequence of images. Thus,
the relative position of coarse aggregate particles in
three-dimensional space can be evaluated directly, and related work
and results will be subsequently reported.
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