
Technical Paper                                                  ISSN 1997-1400 Int. J. Pavement Res. Technol. 4(6):373-383 
Copyright @ Chinese Society of Pavement Engineering 

 

Vol.4 No.6 Nov. 2011                                              International Journal of Pavement Research and Technology  373 

Effects of Roadway Geometric Features on Low-Speed Turning Maneuvers 
of Large Vehicles 

 
Juey-Fu Cheng1+, and Hsuan-Chih Huang1 

 
─────────────────────────────────────────────────────── 
Abstract: Vehicle turning maneuver is a major design control in roadway alignment, pavement and the placement of curbs at highway 
intersections. Geometric features, such as the sharper curvature at turning roadways have significant effects on turning maneuverability of 
vehicles. Due to their wider and longer wheelbases, large vehicles have much more pronounced offtracking and occupy greater 
swept-path widths. This often creates complex driving operations when large vehicles turn at intersections. The turning maneuvers of 
large vehicles not only determine roadway design, but also influence the safety and efficiency of intersection operations. Studying turning 
maneuvers mainly consists of analyzing vehicle turning paths and steering operations. This study presents a computational approach that 
can simulate vehicle turning maneuverability for given roadway alignments, and also checks for coincidence with design standards. This 
study also presents field experiments involving tractor-semitrailer truck and bus on roadways with different geometric features. The 
turning paths of wheels and steering wheel operations were recorded simultaneously. Data from field experiments of different turning 
angles and roadway geometric features are compared with simulated results of computational approach. This study also analyzes the 
effects of curve radius and geometric features on turning maneuvers. The precise analysis of vehicle turning maneuvers, including turning 
paths, swept widths, and steering operations, could help roadway and pavement engineers improve traffic safety and efficiency.  
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Introduction 12 

 
Highway intersections create through, crossing, and turning 
movements for vehicles and therefore contain a number of traffic 
conflict points. Low-speed turning maneuverability of vehicles is a 
major consideration in the design of intersections and turning 
roadways. To serve turning movements between approach legs, the 
design of turning roadways should be based on vehicle turning 
maneuvers, which mainly involve vehicle turning paths and steering 
operations. Vehicle turning paths affect horizontal alignment design, 
lane widening, and the placement of curbs for turning roadways, 
while steering operations influence the smoothness and efficiency of 
driving. 

Traffic in Taiwan consists of a mixture of large vehicles, cars, and 
a considerable number of motorcycles. Intersections contain points 
of conflict between vehicles, bicycles and pedestrians. Large 
vehicles are a threat to motorcyclists and pedestrians, particularly at 
intersections in industrial and harbor areas. The design of turning 
roadways should therefore endeavor to mitigate the effects of large 
vehicles on the safety of smaller and more vulnerable vehicles. 
Studying and clarifying the effects of roadway geometric features 
on large vehicles’ turning maneuvers could help traffic engineers 
plan the layout of intersections, the movement paths of different 
traffic flows, and the design of signal phasing. 

Offtracking occurs when a vehicle makes a turn and its rear 
wheels do not follow the same path as its front wheels. While there 
are two types of offtracking, low-speed offtracking and high-speed 
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offtracking. The intersection design usually focuses on low-speed 
conditions. As a vehicle negotiates a turn at low speed, offtracking 
occurs when the rear wheels track inside the front wheels. Even 
when the turning roadway alignment is a simple circular curve, the 
tracks of the inner rear wheels do not follow circular or spiral curves 
as a result of off-tracking behavior. The configuration of a vehicle 
turning path depends on roadway alignment and the type and 
dimensions of the vehicle: vehicles with wider and longer 
wheelbases have much more pronounced offtracking and occupy 
greater swept-path widths. 

Complex driving operations may arise when large vehicles turn at 
intersections. Rapid and significant changes in the steering angle 
can create difficulty for the driver. A combination vehicle has more 
articulation points and more wheelbases (i.e., distances between 
axles). The combination vehicle driver must perform steering 
operations while paying attention to the deflection of the vehicle 
body. 

Highway design standards require roadway widening on 
horizontal curves to accommodate the greater width of some large 
vehicles. The amount of widening depends on vehicles dimensions 
and roadway curvature. Taiwanese design specification [1] provides 
dimensions for six types of design vehicles. The AASHTO Green 
Book [2] establishes nineteen design vehicles in four general classes 
(passenger cars, buses, trucks, and recreational vehicles).  

Because turning roadways at intersections typically have a lower 
design speed, the configuration of vehicle turning paths is as 
important as widening. The highway design standards mentioned 
above present the minimum turning paths for all the design vehicles. 
Highway engineers can combine these templates with their own 
designs to check for the adequacy and coincidence of roadway 
geometry. However, the minimum turning paths might not be 
enough for engineering applications when (1) roadway alignments 
are other than simple circular curves, (2) roadway alignments have a 
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radius greater than the minimum, or (3) turns are other than the 
specific angles. 

In the geometric design of turning roadways, the analysis of 
vehicle turning paths and swept widths can help identify conflict 
areas of different traffic movements or potential collision points at 
curbs and determine the pavement configuration of turning lanes 
coincident with vehicle turning paths. This in turn can help improve 
roadway design and safety at intersections. Further study on driving 
maneuvers corresponding to roadway alignment, including steering 
and articulation angles and their changing rates, could be used to 
analyze and improve the smoothness of driving operations, and thus 
increase the efficiency of intersections. 
 
Literature Review 
 
Offtracking is the difference between the paths of front and rear 
wheels [2, 3]. It generally increases with the spacing between the 
axles of the vehicle and decreases for larger radius turns. The 
swept-path width can be calculated from the total offtracking and 
the width of the vehicle. The traditional method, known as the "sum 
of the squares," can predict steady-state (maximum) offtracking [4, 
5]. The Western Highway Institute (WHI) simplified this method 
from the earlier work of the Society of Automotive Engineers 
(SAE). 

Transient offtracking describes turning paths before maximum 
offtracking is reached. Compared to mathematical offtracking 
formulas, a computer simulation has the advantage of providing 
both steady-state offtracking and transient offtracking estimates. In 
the 1980s, The University of Michigan Transportation Research 
Institute (UMTRI) produced the first vehicle offtracking model for 
the Federal Highways Administration (FHWA) [6]. Caltrans [7, 8] 
and FHWA [9] began to develop computer programs for analyzing 
and evaluating truck offtracking that outperformed an earlier 
graphic instrument known as a Tractrix Integrator. From the 1990s 
onward, commercial add-on programs configured on CADD 
software (such as AutoCAD and Microstation) have enabled users to 
model vehicular swept paths and check the design of intersections. 
These programs include Transoft Solutions' AutoTURN [10, 11] and 
Savoy Computing Services’ AutoTrack [12]. AutoTURN also has 
the ability to generate and revise vehicle turning path templates. 

Turning paths may also be analyzed by formulating and solving 
equations of a given vehicle’s motion.  Freedman and 
Riemenschneider [13] derived a differential equation to describe 
path of the rear wheels for a bus whose front axle travels on a 
smooth path. The solution to this equation describes the motion of a 
bus turning or changing lanes. Alexander and Maddocks [14] 
discussed kinematics and derived equations to govern the motion of 
rolling vehicles. They then used the equations to describe the 
offtracking of vehicles while turning. Wang and Linnett [15] 
developed a mathematical model for computing the path of any 
point on wheeled vehicles. This model makes it possible to analyze 
the independence of the vehicle’s orientation angle, steering angle, 
and curvature. Prince and Dubois [16] proved that the path of the 
rear wheels is independent of speed, assuming that the wheels are 
not slipping. They introduced ordinary differential equations and 
solutions for the rear wheels of a bus, cab-trailer, and articulated 
truck. Other researchers proposed the driving hazard problem of a 

 

Fig. 1. Vehicle Dimensions and Turning Tendency. 
 
vehicle making a right turn with the rear (overhang) of the vehicle 
swinging leftward toward an unsuspecting driver passing on the left. 
Wang and Cai investigated the mathematical models for this 
problem and the simulation of turning motions [17]. 
The most accurate and reliable, though time-consuming, method of 
obtaining a vehicle turning path is by a full-scale field test. The 
actual wheel paths can be marked and/or measured on site, although 
field tests are restricted to available vehicles with different 
dimensions and configurations. SAE set forth a field-test procedure 
to determine the maximum offtracking and minimum turning 
diameter of motor vehicles [4]. The paths can be marked on the 
pavement by pouring water on the tires while the wheels are turned 
to the maximum cut angle while making complete circle turns. 
Gattis and Howard [18] conducted a field test to determine the 
turning radii and swept paths of selected school buses. They used 
burettes attached to the bus body and an apparatus that sprayed 
water on the tires to mark the bus paths during the sharpest possible 
turns. Terry and Schuster [19] investigated the variables affecting 
the turning path of a reversing tractor-trailer, and used chalk to mark 
the reverse movement paths. Transoft Solutions also conducted field 
tests for vehicle driving paths with GPS receivers mounted on the 
top of vehicles to record the location of front and rear axles. 
 
Computational Approach 
 
This study presents a simplified computational approach for 
engineering applications. This iterative numerical method may be 
used to calculate low-speed vehicle turning paths and their 
corresponding steering and articulating angles. The following are 
the basic assumptions and computation procedure for the example 
of tractor-semitrailer combination truck (Fig. 1). 
 
Basic Assumptions 

  
 There is no slip angle on any of the tires. Furthermore, the 

orientation of instant velocity for every axle is assumed to be 
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(a) 180d-R15 

 

 
(b) 180d-R15A15 

Fig. 10. Turning Paths of Tractor-semitrailer. 
 
experimental roadway alignments exactly. Both the  curves in 
Fig. 12(a) and 12(b) yield the same stable maximum value of -9.87° 
after entering the circular curve for a distance.  

The measured angles of the steering wheel, after filtering the 
repeated swinging motion, are shown as curves  in Fig. 12(a) 
and 12(b). The tendency of curves is similar to that of curves , 
even though there are still some observable fluctuations on the 
curves due to the driver’s effort to follow the roadway 
alignments precisely. However, the curve  of the experimental 
roadway with spiral transitions (180d-R15A15) is more coincident 
with the curve , especially at the entering and leaving sections of 

 
(a) 180d-R15 

 

 
(b) 180d-R15A15 

Fig. 11. Swept Path Width of Tractor-semitrailer. 
 

 
(a) 180d-R15 

 

 
(b) 180d-R15A15 

Fig. 12. Steering and Articulating Angle of Tractor-semitrailer. 
 
the turns. This could indicate that the turning roadway with 
transition sections is easier for drivers to follow. 
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Fig. 13. Effect of Spiral Transition on Steering Angle. 
 

 
Fig. 14. Effect of Spiral Transition on Steering Angle Changing 
Rate. 
 

Fig. 12(a) and 12(b) also show the simulated articulating angles 
with and without spiral transitions. The maximum values of the 
articulating angles for 180d-R15 and 80d-R15A15 are -41.72° and 
-40.77°, respectively. The maximum articulating angle of 
experimental roadway with spiral transitions is slightly smaller, and 

the changing rates (slopes of the curve) at entering and leaving 
sections of the turns are also milder. 

The simulated steering angles of the tractor-semitrailer of 
180d-R15 and 180d-R15A15 overlap at the midpoint of turning 
roadways in Fig. 13. In the case of 180d-R15A15, most of the 
increasing and decreasing of steering angles occurred over a certain 
distance on the spiral transitions. However, the steering angles of 
180d-R15 change rapidly after the beginning and end points of 
turning roadway. Fig. 14 shows the changing rates of steering angles. 
The peak clockwise and counterclockwise steering angle changing 
rates significantly decreased from 3.67 and -3.74 deg/m to 0.65 and 
-0.66 deg/m in the presence of spiral transitions. Field experiments 
also indicate that a roadway without spiral transitions makes it 
harder for drivers to follow the entering and leaving sections, 
causing the driving path to deviate a little from the preset alignment.  

Table 1 shows important data of all experimental roadways. All 
the measured results of maximum swept-path widths are smaller 
than the simulated results by the range of 29 to 63 cm for the 
tractor-semitrailer, while there is no significant difference for the 
bus on 90° turns. The reason for this difference could be the effect 
of slip angle on tires. The influence of slip angle on a combination 
vehicle is more significant due to deflection of the vehicle body. 

When the radius of experimental roadways increases from 15 m 
to 25 m, the measured maximum swept-path widths decrease 
significantly, especially at 180° turning roadways with the 
tractor-semitrailer which have decreasing rates of 21-23%. The 
existence of spiral transitions has little effect on maximum 
swept-path width, maximum steering angle, and maximum 
articulating angle. On the other hand, spiral transitions can greatly 
help to decrease maximum changing rates for steering angles; the 
decreasing range for the tractor-semitrailer is 82-89%, and 63-77% 
for the bus. 

 
Table 1. Results of Field Experiment and Computational Approach. 

Roadway 
Max. Swept Path Width (m) Max.θs Max.θa Rate.+θs Rate.-θs 

Field Comput. ε (deg) (deg) (deg/m) (deg/m) 

Tractor-Semitrailer 
90d-R15 5.11 5.57 -0.46 -9.86 -35.22 3.69 -3.75 
90d-R15A15 4.93 5.33 -0.4 -9.81 -31.52 0.67 -0.66 
90d-R25 4.18 4.51 -0.33 -5.9 -23.15 2.23 -2.25 
90d-R25A25 4.08 4.37 -0.29 -5.91 -21.49 0.24 -0.26 
180d-R15 5.72 6.33 -0.61 -9.87 -41.72 3.67 -3.74 
180d-R15A15 5.62 6.25 -0.63 -9.87 -40.77 0.65 -0.66 
180d-R25 4.25 4.62 -0.37 -5.9 -23.96 2.2 -2.25 
180d-R25A25 4.3 4.61 -0.31 -5.92 -23.9 0.24 -0.26 

Bus 
90d-R15 3.35 3.41 -0.06 -22.07 - 3.69 -3.79 
90d-R15A15 3.27 3.35 -0.08 -20.69 - 1.35 -1.36 
90d-R25 3.04 3.02 0.02 -13.28 - 2.26 -2.27 
90d-R25A25 3 3.01 -0.01 -13.05 - 0.52 -0.55 

Max.θs: maximum steering angle (computational) 
Max.θa: maximum articulating angle (computational) 
Rate.+θs: maximum clockwise steering angle changing rate (computational) 
Rate.-θs: maximum counterclockwise steering angle changing rate (computational) 
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