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Evaluation of Foamed Warm-Mix Asphalt Incorporating Recycled Asphalt 
Pavement for Volumetric and Mechanical Properties 
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─────────────────────────────────────────────────────── 
Abstract: This study evaluated mixes obtained from a warm-mix asphalt (WMA) pilot project in Reno, Nevada, in the United States, in 
which the Ultrafoam® technology was used to produce the WMA. The evaluated mixtures included 15% recycled asphalt pavement 
(RAP). The study addressed the impact of curing time on volumetric properties of foamed WMA in addition to including a sample 
reheating study. Additionally, the field-produced WMA mixes were evaluated for moisture damage, permanent deformation and thermal 
cracking resistance. It was recommended that production testing for volumetric properties should be conducted within four hours of 
manufacturing foamed WMA at the plant. The mix should be cured in a sealed container at the expected lay-down/compaction 
temperature. Overall in the laboratory, the WMA mix showed no significant additional reduction in moisture damage resistance although 
the reverse was true for permanent deformation resistance. The WMA exhibited better thermal cracking resistance than the hot mix 
asphalt (HMA). A distress survey conducted after thirteen months of service showed no distresses in the WMA pavement despite its 
relatively lower rutting resistance observed in the laboratory. 
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Introduction 12 

 
The most critical part of constructing the hot mix asphalt (HMA) 
layer is to obtain a uniform and durable layer that can withstand the 
combined actions of traffic loads and environmental conditions. 
These desirable properties have been achieved through effective 
design, uniform mixing and coating during the manufacturing 
process and effective compaction during lay-down operations. For 
HMA mixtures, mixing and compacting at elevated temperatures 
(typically 135-175C) have been necessary to achieve these 
properties. This however, is at the expense of the constantly 
increasing asphalt binder prices and energy costs. Therefore, by 
reducing the energy required to produce and construct the HMA 
layer, significant cost savings can be realized. The past few years 
have seen the introduction of warm mix asphalt (WMA) 
technologies in efforts to achieve this. WMA is produced at 
temperatures 30-75C lower than those required for HMA [1], and 
this is directly related to savings in the energy required for 
production. 

Whatever the economical, practical, and environmental benefits 
of using WMA technologies, the produced WMA must be highly 
resistant to moisture damage, cracking, and permanent deformation 
in addition to being adaptable to use of recycled asphalt pavement 
(RAP) in the mixtures. 

Among the WMA technologies available today, this study 
evaluated the Ultrafoam® technology. It is a water-based 
technology that uses a foaming nozzle to inject a percentage of 
water (usually about 1-2% by weight of binder) into the asphalt 
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binder flow line. 
Three mixes; one lab-produced HMA and two field-produced 

WMA mixes were evaluated. Both field-produced WMA mixes 
were obtained from a pilot project that was laid down along Chism 
Street in Reno, Nevada in the United States. In a study of impact of 
curing time on mixtures’ volumetrics, one WMA mix was 
compacted right on delivery to the laboratory while the other was 
compacted later in a sample reheating study. 

HMA samples are often reheated for a variety of acceptance and 
performance tests. However since the Ultrafoam® WMA 
technology produces foamed asphalt, which is an irreversible 
component, reheated samples should not be used for volumetric 
acceptance [2]. Nevertheless, reheated samples can be used to 
evaluate the mechanical properties of WMA mixtures provided the 
reheating effect on WMA is similar to that for HMA. Therefore, the 
evaluation of impact of curing time on volumetric properties was 
conducted to determine a convenient cap on curing time. The cap 
was based on how long foamed WMA may be cured prior to 
compaction at WMA temperatures and still meets the requirements 
for volumetric properties. This was also motivated by the 
understanding that foamed WMA loses its foaming effect with time. 
The results of this evaluation would therefore be helpful in 
performing quality control/quality assurance on similar mixtures. 

All mixes were evaluated for resistance to moisture damage, 
permanent deformation and thermal cracking using dynamic 
modulus testing, repeated load triaxial (RLT) and thermal stress 
restrained specimens testing (TSRST), respectively. 2D planar 
image processing was also used in an attempt to distinguish between 
performances of the evaluated mixtures. 

 
Objectives 

 
The overall objectives of this study are summarized below: 
 Evaluate the rheological properties of asphalt binder recovered 

from the WMA mix. 
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Table 1. Test Matrix for Mechanical Properties’ Evaluation. 

Property 
Mixture Type 

WMA – No Reheat WMA – Reheat HMA – Lab Produced 

Unageda Ageda Unageda Ageda Unageda Ageda 

Resistance to Moisture Damage 
- |E*| vs. Freeze-Thaw (F-T) cycles 

3 Samples @ 
0-1-6 Cycles

-- 
3 Samples @ 
0-1-6 Cycles 

-- 
3 Samples @ 
0-1-6 Cycles

-- 

Resistance to Permanent Deformation 
- Unconditioned Flow Number 

3 Samples -- 3 Samples -- 3 Samples -- 

Resistance to Thermal Cracking 
- Unconditioned TSRST 

-- 3 Samples -- 3 Samples -- 3 Samples

a Aged: long-term aging of compacted samples in a forced draft lab oven at a temperature of 85C for 5 days. 
 
Table 2. Superpave Performance PG Grading of Asphalt Binders. 

Material 

Critical temperature (°C) 

True PG Grade SP PG Grade 
Original RTFO RTFO+PAV 

G*/sin 
≥ 1.0 kPa 

G*/sin 
≥ 2.2 kPa 

G*sin 
 5000 kPa 

S-value 
 300 MPa

m-value 
≥ 0.3 

Virgin Binder 67.1 69.6 19.6 -27.7 -25.1 PG68.6-25.3 PG64-22 
RAP binder 76.0 77.2 22.9 -27.5 -18.8 PG76.2-18.8 PG76-16 

 

 
Fig. 2. Blending Chart Results. 
 

asphalt binders were extracted in accordance with AASHTO 
T164 using trichloroethylene as the solvent and recovered 
following ASTM D5404, from all mixes and were tested in the 
Dynamic Shear Rheometer (DSR). 

 Impact of curing time: the following properties were measured 
after curing the WMA-No Reheat mix in a sealed container at 

121C: 

- Maximum theoretical specific gravity (Gmm) 
- Marshall air-voids 
- Marshall stability and flow 
- Number of gyrations to 8 percent and 2 percent air-voids 

(N92 and N98, respectively). N92 was found to provide a 
simple indicator of mixture workability and compactability 
[3]. The higher the number of gyrations the higher is the 
compaction effort required to reach the target air-voids.   

 Mechanical properties: Table 1 shows the test matrix for this 
effort. 

 

Materials and Mix Design 
 

The Marshall Mix Design method as outlined in the Asphalt 
Institute’s Mix Design Methods Manual MS-2 [4] was used to 
design the mixes following City of Reno standard specifications. 
The aggregates used were obtained from the pit in Lockwood, 
Nevada. Gradations done on extracted aggregates from all three 
mixes revealed that all were well-controlled in both lab and field 
and were all similar. This could help validate the HMA mix as a true 
control albeit it was laboratory-produced. 

An unmodified PG64-22 virgin asphalt binder was used with all 
mixes. The Superpave Performance Grading (PG) binder system 
was used to grade the virgin binder and RAP binder following 
AASHTO M320. The RAP binder was extracted (AASHTO T164), 
and recovered using the rotary evaporator (ASTM D5404). The 
recovered RAP binder was graded by testing it as original, 
short-term aged through the Rolling Thin Film Oven (RTFO), and 
long-term aged through the Pressure Aging Vessel (PAV). Table 2 
summarizes the critical temperatures and PG grades of both binders. 
Critical temperatures are temperatures at which a binder just meets 
the appropriate specified Superpave criteria. 

Using virgin and RAP binder grading results, the blending chart 
process was conducted as shown in Fig. 2. The data show that at 
15% RAP the blended binder graded as PG64-22 which was the 
target grade. The need to assess effectiveness of using the blending 
chart even at low RAP contents motivated the choice of RAP 
content as low as 15%. In addition the contractors conducted trials 
with different RAP contents and showed that the target binder grade 
remained unaffected at 15% RAP. Table 3 summarizes the mix 
design data. 

 
Laboratory Evaluation 

 
Rheological Properties of Extracted and Recovered 
Asphalt Binders 
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Table 3. Mix Design Summary and Specifications. 

Property Values Requirements 

3/4" Stockpile – Bin Percentage 18 -- 
1/2" Stockpile – Bin Percentage 11 -- 
3/8" Stockpile – Bin Percentage 23 -- 

Rock Dust – Bin Percentage 21 -- 
RAP – Bin Percentage 15 15 

Natural Sand – Bin Percentage 12 -- 
Hydrated Lime by Dry Weight of 

Virgin Aggregate 
1.5 -- 

RAP Binder Content (%TWM) 5.7 -- 
Optimum Binder Content 

(OBC), (%TWM) 
4.9b -- 

Total Air Voids (%) 4.0 4.0 
Voids in Mineral Aggregates (%) 13.9  13 

Voids Filled with Asphalt (%) 71.6 65-75 
Marshal Stability (kN) 14.5 > 8 

Marshall Flow (0.25 mm) 13 8-20 
b With OBC of 4.9% and RAP binder content of 5.7%, the blended 

binder consisted of 82.6% of PG64-22 and 17.4% of RAP binder. 
 
Fig. 3 shows the G*/sin of the various asphalt binders as function 
of temperature. A significantly lower stiffness was observed for 
WMA-No Reheat mix binder when compared to the HMA mix 
binder. However, reheating the WMA resulted in a significant 
increase in binder stiffness. The stiffness of WMA-Reheat mix 
binder was slightly lower than that from the HMA mix. The HMA 
mix was laboratory-produced and the two hours aging at 145C 
before compaction may not have replicated the aging at the plant. 

Additionally, Fig. 3 shows the G*/sin of the RTFO-aged 
PG64-22 binder. The stiffnesses of binders from all three mixes 
were higher than the RTFO-aged binder stiffness. These mixes 
included 17.4 percent RAP binder while the latter was 100 percent 
virgin. 

Fig. 3 also shows that the stiffness of binders from HMA and 
WMA-Reheat mixes was similar. This is consistent with the finding 
in the NCHRP 9-43 sample reheating study where reheating WMA 
increased its stiffness to close to that of the corresponding HMA. As 
a result of this and the similarity in gradations (Fig. 4), the HMA 
mix was considered an appropriate control mix for this study. 

 
Fig 3. G*/sin of the Extracted/recovered Binders. 
 
Impact of Curing Time on Volumetric Properties 

 
Fig. 5 shows the total voids in the mix, flow and stability for the 
Marshall-compacted specimens.  Sample groups 1 and 2, in the 
figure, were drawn at different times but are grouped together 
because their drawing times were relatively close. Fig. 5(a) shows 
an increase in air voids as function of curing time. This would 
suggest that the mix became less compactable with curing time. A 
significant increase in air voids was observed after 15 hours of 
curing. Additionally on average, all specimens met the job mix 
formula of 40.5% air voids except when compacted after 15 hours 
of curing.  The results also suggest that the mix fell short of the job 
mix formula somewhere between 4 and 15 hours of curing time. 

The flow and stability data show that their criteria were met at all 
curing periods. The specimens exhibited similar flow and stability 
after 0, 2, and 4 hours of curing. However after 15 hours a lower 
flow and higher stability were obtained. These results show that 
both properties also significantly changed somewhere between 4 
and 15 hours of curing time. 

In determining N92 and N98, specimens were 
gyratory-compacted at 121°C to 495 gyrations and sample height 
data recorded at each gyration. 300 kPa compaction pressure was 
used since at 600 kPa most mixtures show little change in 

 
Fig. 4. Gradations of the Extracted/recovered Aggregate. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Impact of Curing Period on Marshall-compacted Specimens: 
(a) Voids in Total Mix; (b) Marshall Flow; (c) Marshall Stability. 
(Numbers in Bars Represent the Individual Means for Sample 
Groups 1 and 2 Each Based on 3 Replicates and Whiskers Represent 
Mean ± 1 STD, Numbers Above Bars Represent Overall Means). 
 
workability index [3]. Fig. 6 shows the results for N92 and N98. 
The data show an increase in number of gyrations as function of 
curing time, which would also suggest a decrease in compactability 
with curing time. This was more significant in N98. It can be 
observed that rates of increase of N92 and N98 both decreased 
significantly after 8 hours of curing. Consequently, the 8 hours of 
curing seems to indicate the point after which the mixture lost most 
of the foaming effect. Additionally, the 8 hours could be the curing 

 

 
Fig. 6. Impact of Curing Time on Gyratory-compacted Specimens: 
(a) Number of gyrations to 8% air voids; (b) Number of gyrations to 
2% air voids. (Numbers Represent Mean Values of 3 Replicates and 
Whiskers Represent Mean ± 1 STD) 
 
time between 4 and 15 hours at which the mix fell short of the job 
mix formula based on what was observed in Fig. 5(a). 

 
Resistance to Moisture Damage 

 
The procedure that was used to evaluate moisture damage resistance 
is based on recommendations from NCHRP Report 589 [5] i.e. 
measurement of the dynamic complex modulus (|E*|) under 
multiple freeze-thaw (F-T) cycling. The rationale behind this is in 
the fact that the gradual loss of strength, or degradation, of the 
mixture is a typical situation associated with moisture damage. The 
multiple F-T cycling used followed the procedure also outlined in 
AASHTO T-283 at multiple stages. The |E*| master curve was 
obtained at the unconditioned stage (0 F-T) and after 1 and 6 F-T 
cycles at 21C as reference temperature. The use of |E*| for 
moisture damage evaluation uses ratios instead of absolute values of 
mixture stiffness. The conditioned stiffnesses are related to their 
corresponding unconditioned values. 

Beside the |E*| master curve of the WMA-No Reheat being the 
lowest of them all, the master curves of WMA-Reheat and HMA 
mixes were observed to be almost inseparable at every F-T cycle. 
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Fig. 7. Dynamic Modulus Versus F-T Cycles (Numbers in 
Parentheses Correspond to Percent Reduction in the Unconditioned 
|E*| after 1 F-T and 6 F-T cycles). 
 

The WMA reheating process increased the mixture’s |E*| to a value 

similar to that of HMA. This finding was consistent with results 

from the asphalt binder study where the WMA-Reheat mix binder 

stiffness was slightly lower than the HMA but significantly higher 

than the WMA-No Reheat binder stiffness. 
Fig. 7 shows the |E*| properties of the mixtures at a loading 

frequency of 10Hz as a function of multiple F-T cycling at both 
21C and 38C. The data show a reduction in |E*| as function of 

multiple F-T cycling. The |E*| of WMA-No Reheat mix was the 
lowest at all F-T cycles, but showed a lower reduction when 
compared to the other two mixes, albeit the numbers were close in 
magnitude. For example, the |E*| at 38C of WMA-No Reheat, 
WMA-Reheat, and HMA mixes dropped 24, 31, and 29 percent, 
respectively, from their unconditioned value after 1 F-T cycle. The 
reduction in |E*| for WMA-Reheat and HMA mixes was observed to 
be generally similar. Overall, the data revealed no additional 
reduction in the mixture’s resistance to moisture damage when the 
foaming process was used to produce WMA. 

 
Resistance to Permanent Deformation 

 
Since WMA exhibits lower initial stiffness than conventional HMA 
due to its lower production temperatures, the evaluation of its 
resistance to rutting relative to that of HMA was necessary. This was 
done using the RLT test which consists of testing a 100 mm by 150 
mm cylindrical sample under triaxial state of stresses. Under a 
constant confining pressure, a repeated haversine deviator stress is 
applied for an appropriate pulse time (loading) followed by a rest 
period (unloading). The sample’s axial deformation is measured 
over its middle portion by two linear variable differential 
transformers placed 180° apart. The resulting cumulative permanent 
axial strain is plotted versus number of load cycles and can be 
defined by the primary, secondary, and tertiary stages which are 
described below. 
 Primary stage – Permanent strain increases rapidly producing a 

high initial level of rutting with a decreasing rate of plastic 
deformations. 

 Secondary stage – Permanent strain rate maintains a constant 
value. 

 Tertiary stage – High level of permanent axial strain 
predominantly associated with plastic or shear deformations 
under no volume change. The point at which the tertiary flow 
starts is called the flow number (FN) and it is the number of 
load cycles corresponding to the minimum rate of change of 
permanent axial strain. 

The FN test was among those selected for further evaluation 
under the NCHRP 9-19 project based on an extensive study of 
laboratory-measured FN and field-measured rutting at three field 
sites: Westrack, MnRoad, and the FHWA ALF test facility. In all 
three it was found that FN was highly correlated to field rut depth 
(within the asphalt layer) at any particular traffic level. 

The RLT test parameters (pulse time, rest period, deviator and 
confining stresses) were determined for 150 mm layer thickness 
using predictive equations developed by Hajj et al. [6]. Non-braking 
conditions were assumed in all calculations since braking would be 
more critical at intersections and/or for urban streets where there is 
lots of stop-and-go. A pulse time of 0.06 seconds was determined 
for the street’s operational speed of 24 km/h. The rest period was 
determined as 1.0 second based on a tandem axle separation of 
about 9.14 m (typical for 18-wheeler truck). All tests were 
conducted at 52C using 538 kPa and 241 kPa as deviator and 
confining stresses, respectively. The test temperature was 
determined as the effective pavement temperature at 50 mm below 
pavement surface for the location using the LTPPBind software. The 
FN was calculated using the Francken model [7] whose results are 
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Fig. 8. Flow Number Results of Evaluated Mixtures by the 
Francken Method. (Numbers Represent Mean Values and Whiskers 
Represent Mean ± 1 STD). 
 
shown in Fig. 8. 

The observed large variability in the HMA results persisted 
despite testing as many as seven replicates, thus invalidating 
statistical analysis on the FN results. However the data was useful in 
providing overall trends. It showed that HMA exhibited a 
significantly higher FN than both WMA mixes. Reheated WMA 
samples showed slightly higher FN than WMA-No Reheat samples. 
This trend is consistent with the finding of Wielinski et al. [1] where 
the former mix showed a lower rut depth than the latter mix, hence 
similarly raising the question of which of the two mixes’ data best 
represents the field-placed mix. Notably, since WMA-Reheat and 
HMA mixtures had similar stiffness, the permanent deformation 
characteristics would therefore be expected to be similar as well. 
However, the results in Fig. 8 suggest otherwise. Overall, the data 
show a reduction in the mixture’s resistance to rutting when the 
foaming process was used to produce WMA. 2D planar image 
processing was then used in attempt to understand the difference in 
the findings between the dynamic modulus and FN test results. 

 

2D Planar Image Processing 
 

Despite the two mixtures; HMA and WMA-Reheat having similar 
stiffness, they had totally different permanent deformation 
characteristics as noted above. Since neither asphalt binder 
characteristics nor aggregate gradation could be used to explain this 
discrepancy, resort was made to other aggregate properties namely; 
aggregate contact points, orientation and segregation; which were 
obtained through planar image processing. 

A 2D image analysis software, developed by RILEM, can be used 
to determine aggregate structure in compacted asphalt mixtures. 
From a scanned image of a specimen, the software uses such 
properties as; minimum size of aggregate, percent air-voids, asphalt 
binder content, combined aggregate bulk specific gravity, asphalt 
binder specific gravity and aggregate gradation; as input, to output 
such aggregate structure data as contact points, orientation, 
segregation and gradation. An attempt is made to match the true 
gradation with the calculated gradation. This is done through 
comparing the true volumetric percent of aggregate and true percent 
retained on each sieve, which are calculated from the input data, 
with their corresponding quantities calculated from image attributes. 
The true quantities are therefore volume-based while the calculated 

quantities are area-based. 
Unconditioned |E*| samples were re-used in this effort. A slice, 

about 35 mm thick, was cut out of the middle portion of the gauge 
length (about 70 mm) as illustrated in Fig. 9(a) exposing 4 surfaces 
that were each scanned using a flatbed scanner and analyzed, as 
replicates. A resolution of 600 dpi was used for all scans. Results of 
aggregate orientation and segregation, unlike contact points, were 
found to be similar for all three evaluated mixes. 

 Fig. 9(b) shows determination of aggregate contact points.  
Aggregates are considered to be in contact when the minimum 
distance between their surfaces is less than a user-defined surface 
distance threshold (SDT) value. An SDT value of 2 mm was used in 
this study. 

The results of aggregate contact points for the evaluated mixtures 
are shown in Fig. 9(c). The figure shows that the two WMA mixes 
were statistically the same at a 5% significance level. HMA was 
statistically significantly greater than both WMA mixes. The fact 
that the HMA production temperatures were relatively higher could 
explain this. This is because the higher workability generally 
associated with higher temperatures improves the probability of 
aggregate particles contacting one another. Additionally, the 
relatively higher asphalt absorption by aggregate particles when 
temperatures are higher may contribute to improvement of 
inter-particle contact. The discrepancy that the dynamic modulus 
test could not be used to differentiate between the WMA-Reheat and 
HMA mixes, whereas the FN test could, can therefore probably be 
explained by the results in Fig. 9(c). This is because the |E*| test 
being limited to the material’s linear viscoelastic region thereby not 
significantly damaging the sample, the role played by aggregate 
contacts is minimal. It is important to note here that the inability of 
the |E*| test to significantly damage the specimen is from the load 
viewpoint rather than environmental. However in the FN test which 
simulates rutting as a load-related distress, specimens are loaded to 
deformation that leads to considerable change in specimen shape. 
Under such conditions, the contacts between aggregates play a 
major role in the material’s overall resistance to applied loads. 
Henceforth the HMA mix showed the best rutting resistance among 
all the evaluated mixes. 

 
Resistance to Thermal Cracking 

 
Since WMA mixtures are produced and placed at lower 
temperatures than conventional HMA mixtures, they should undergo 
less binder oxidation. However, the effect of less oxidative aging on 
the thermal cracking resistances of WMA mixtures is still not well 
defined. Given that thermal cracking is identified as one of the 
major types of distresses in northern Nevada, this study evaluated 
the resistance of the WMA mixture to thermal cracking. The TSRST 
(AASHTO TP10-93) was used to determine the low-temperature 
cracking resistance of the mixtures. The test cools down a 50 by 50 
by 250 mm beam specimen at a rate of 10°C/hour while restraining 
it from contracting. Tensile stresses are therefore generated in the 
process and the specimen would fracture as these stresses exceed its 
tensile strength. The fracture temperature represents the temperature 
at which the asphalt mixture will crack due to thermal stresses while 
the fracture stress represents the magnitude of stress caused by the 
thermal contraction of the mix. Additionally, the latter controls the 
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