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─────────────────────────────────────────────────────── 
Abstract: The timely identification of undesirable distresses has been a critical step in pavement management at the network level. To 
date, many models have been developed to forecast pavement conditions. The most popular model in developing countries is the World 
Bank developed model: HDM-4. This study summarizes the implementation of a pavement condition prediction methodology using the 
Artificial Neural Network (ANN) to forecast cracking, raveling, rutting and roughness for Low Volume Roads (LVR) in India. Road 
inventory data, as well as six cycles of pavement performance data that include distresses, subgrade characterization and traffic data, were 
collected from 61 in-service LVR pavement sections over a 3 year period in India. ANN models with different architectures were trained 
and tested to suggest the optimum ANN model. The study results suggest that ANN models satisfactorily forecast future individual 
distresses. The performance of the suggested ANN models is also compared to the calibrated HDM-4 models.  
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Introduction 12 

 
Artificial neural networks use the mathematical simulation of 
biological nervous systems to process acquired information and 
derive predictive outputs after the network has been properly trained 
for pattern recognition. A neural network consists of numerous 
layers of parallel processing elements, or neurons. One or more 
hidden layers may exist between an input and output layer. The 
neurons in the hidden layers are connected to the neurons of a 
neighboring layer by weighting factors that are adjustable during the 
model training process. The networks are organized according to 
training methods for specific applications. Fig. 1 illustrates a typical 
three-layer neural network consisting of four neurons in the input 
layer, four neurons in the hidden layer, two neurons in the output 
layer, and interconnecting weighting factors (wij) between the layers 
of neurons.  

The “training” of an ANN model is a procedure by which ANN 
repeatedly processes a set of test data (input-output data pairs), 
changing the values of its weights according to a predetermined 
algorithm in order to improve its performance. Back-propagation is 
the most popular algorithm for training ANN models (Lippman, 
1987) [1]. It is a supervised learning method in which an output 
error is fed backward through the network, altering connection 
weights so to minimize the error between the network output and 
the targeted output. The following equation is used for correcting 
the weighting factor: 

     ijijij wEnwnw  /1                           (1) 

where  nwij  and  1 nwij  are weight increments between 
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nodes i and j during the nth and (n−1)th steps. The momentum 
factor α is used to speed up the training in flat regions of the error 

surface and helps to prevent oscillations within the weights. A 
learning rate (ε) is used to decrease the potential of the training 
process being trapped in local minima instead of global minimal. 
 
Background Literature 
 
ANNs are valuable computational tools that are increasingly being 
used to solve complex, resource-intensive problems as an alternative 
to using more traditional techniques. Ceylan et al. (2004) used 
ANNs as pavement structural analysis tools for the rapid and 
accurate prediction of critical responses and deflection profiles of 
flexible pavements subjected to typical highway loadings [2]. Meier 
et al. (1997) trained back propagation type ANNs as surrogates for 
ELP analysis in a computer program for back calculating pavement 
layer moduli and realized a 42 times increase in processing speed 
[3]. Gucunski and Krstic (1996) [4] and Khazanovich and Roesler 
(1997) [5] reported similar ANN applications. The research project 
team working on the development of the new, mechanistic based 
AASHTO Pavement Design (NCHRP 1-37A) has recognized ANN 
as nontraditional yet possessing very powerful computing  

 

 
Fig. 1. Typical Three-Layer Neural Network. 
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techniques, taking advantage of ANN models in preparing the 2002 
Design Guide concrete pavement analysis package.  

In addition, artificial neural networks (Attoh-Okine, 1994, 1999, 
2001, 2002 [6-9]; Choi, Adams, and Bahia, 2004 [10]; Sundin and 
Braban-Ledoux, 2001 [11]; Roberts and Attoh-Okine, 1999 [12]; 
Alsugair and Al-Qudrah, 1998 [13]; Huang and Moore, 1997 [14]; 
Fwa and Chan, 1993 [15]) have recently been used in simulating 
pavement deterioration, pavement-performance prediction, flexible 
pavement cracking prediction, and condition ratings of jointed 
concrete pavements. Several neural network studies, as explained 
above, have been conducted to estimate current pavement condition, 
predict future pavement deterioration, and finally assist engineers in 
selecting optimal maintenance and rehabilitation activities. Such 
applications will help pavement management engineers to choose 
the best available resource allocation strategies. Thube (2006) [16] 
and Thube et al. (2006) [17] attempted to suggest ANN based 
pavement deterioration models for low volume roads in India by 
using the sigmoid axon function for training ANN models. 
 
Objective of the Study 
 
The objectives of the present study are as follows: 
(i) To suggest an appropriate ANN model to predict the 

progression of different pavement distresses such as total 
cracking area, total raveling area, rut depth and roughness for 
low volume roads in different terrains of India. 

(ii) To compare distress predictions for low volume roads in India 
made by the proposed ANN models against predictions made 
by the calibrated HDM-4 models. 
 

Methodology of the Development of ANN Models 
 
In this study, individual unified ANN models are developed to 
predict the value of progression in total cracking area (in 
percentage), in total raveling area (in percentage), in rut depth (in 
mm), and in total roughness (in IRI) for flexible LVR pavement 
sections. Sixteen different types of ANN architectures were used for 
each type of distress to determine the best ANN model architecture. 
The back propagation algorithm, which is the most commonly used 
type of artificial neural network, is used to train neural networks. 
The details for identifying various input parameters for model 
development, a database selection for training, testing and 
validation, and the training and testing of ANN models are 
discussed next. 
 
Identification of Input and Output Variables 
 
From the analysis of the performance model equations in HDM-4 
models (Odoki, 2000) [18], it is evident that the pavement’s 
evolution fundamentally depends on four global variables: traffic, 
pavement age (calculated from the date of construction or most 
recent rehabilitation), dominant climatic conditions, and structural 
capacity. These variables help to define the initiation as well as the 
progression of the distress. They may exhibit together with 
interaction between the different manifestations of damage and 
wear.  

Road inventory details, as well as six cycles of pavement 

performance data (pre-monsoon, post-monsoon, and during the 
winter season) that include various pavement distresses, sub-grade 
characterization, and traffic data, are collected from 61 in-service 
LVR pavement sections located in the Uttarakhand state of India 
during the years 2004, 2005, and 2006. The data were subsequently 
used for the calibration of HDM-4 models and the development of 
ANN models. Shown in Table 1, the category of input variables for 
proposed different ANN models are selected primarily on the basis 
of corresponding HDM-4 pavement deterioration models and the 
details of input variables for each individual ANN model. The input 
variables for ANN models consisting of traffic data, climatic or 
environmental details, road geometry class, pavement details 
including that of subgrade, pavement distress data, etc., for each of 
the identified road section have been collected from field studies as 
well as from the office records of highway divisions in charge of the 
maintenance of these roads.  

The types and extent of distresses (e.g. areas of cracking, raveling, 
pothole and edge break) have been measured by experts experienced 
in this area through visual surveys of each road test section. These 
surveys are done by making the affected areas in the form of   
geometric shapes having similar distresses. The corresponding ANN 
model outputs will include total cracking area (%), total raveling 
area (%), total rut depth progression (mm), and total roughness 
progression (IRI). The details of the general characteristics of the 
data sets used for the development of ANN models in the present 
study are given in Table 2. Similarly, HDM-4 pavement 
deterioration models have been calibrated for LVR in accordance 
with Indian conditions by using the above periodic performance 
data sets. The details of the suggested HDM-4 calibration 
coefficients are given in Table 3 [18].   
 
ANN Model Architecture 
 
The selection of ANN architecture is not a decision making process. 
Most of the time, trial and error, combined with engineering 
judgment, is used to determine the appropriate architecture for a 
particular problem. In the present study, a number of input and 
output variables are kept constant, and variations are made in the 
hidden layers and in the neurons per hidden layers. The details of 
the sixteen different ANN model architectures used for each 
cracking, raveling, rut depth, and roughness progression ANN 
model in the present study are given in Table.4. 
 
Training and Testing Set Generation 
 
The task known as the formation of datasets is carried out with the 
objective of forming three datasets that can be instantaneously used 
for network training, testing, and validation. The database is divided 
into two datasets, and the first set includes all of the historical 
pavement performance information except the last cycle, which 
has been used for training/testing purposes. The second dataset 
contains only the latest cycle data, which has been used for 
validation purposes. To obtain the training and testing datasets, the 
whole dataset used for training and testing purposes is again 
divided into two subsets. One set contains 80% of the data that are 
used for network training, and the remaining set contains 20% of 
the data used for network testing. According to the database 
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Table 1. Details of Input Variables for ANN Model Developments. 

Details of ANN Model 
Serial 
No. 

Details of Input Variables 
Cracking 

Progression 
Model 

Raveling 
Progression 

Model 

Rut Depth 
Progression 

Model 

Roughness 
Progression 

Model 

1 Age in Months    

2 Initial Cracking Area (% Area) at Start of Analysis Cycle     
3 LL of Subgrade    

4 PL of Subgrade    

5 PI of Subgrade    

6 Field Moisture Content of Subgrade    

7 OMC of Subgrade    

8 CBR (Soaked) of Subgrade    

9 Maximum Dry Density of Subgrade    

10 SNP    

11 AADT (Motorized)    

12 AADT (Non-motorized)    

13 % of Truck Volume    

14 Composition of Commercial Vehicles (%)    

15 Percentage Duration of Dry Season    

16 Mean Monthly Precipitation (mm)    

17 Mean Annual Temperature (Degrees)    

18 Average Temperature Range (Degrees)    

19 No of Days Having Temperature > 32 0C    

20 Rise + Fall (m/km)    

21 Horizontal Curvature (Degree/km)    

22 Speed Limit (km/h)    

23 No of (Rise + Fall) / km    

24 CDS(Construction Defects Indicator for Bituminous Surfacing)    
25 CDB(Base Construction Defects Indicator)    

26 CRP(Cracking Progression Retardation Indicator)    
27 Initial Raveling Area (% Area) at Start of Analysis Cycle     
28 Observed Cracking Area (%) During Present Cycle    
29 Observed Raveling Area (%) During Present Cycle    
30 Observed Potholing area (%) During Present Cycle    
31 Observed Rut Depth (in mm) During Present Cycle    
32 Observed Edge Break (in sq. m) During Present Cycle    
33 Observed Roughness (IRI) at Start of Analysis Cycle     

Total Input Variables for ANN Model 26 26 29 31 

 
Table 2. Characteristics of the Database for ANN Model Development. 

Details of Database 
Serial No. Description of Variable 

Minimum Maximum Range 

1 Age in Months 12 260 248 
2 Adjusted Structural Number of Pavement Section(SNP) 1.46 2.78 1.32 
3 Motorized AADT 40 1507 1467 
4 Non-Motorized AADT 8 1194 1186 
5 Total Cracking Area (%) 0 41.47 41.47 
6 Total Raveling Area (%) 0 68.81 68.81 
7 Edge Break Area ( sq. m) 0 51.86 51.86 
8 Total Rut Depth(in mm) 3 22 19 
9 Total Pothole Area (%) 0 0.147 0.147 

10 Total Roughness(in IRI) 6.12 11.87 5.75 

 
partitioning, the validation dataset has been considered 
statistically independent from the datasets used for training and 

testing purposes. Hence, the verification of ANN models through 
using the validation dataset can be considered a touchstone in  
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Table 3. Details of Suggested HDM-4 Pavement Deterioration 
Calibration Factors for Low Volume Roads in India. 

Total 
Cracking 

Progression 

Raveling 
Progression 

Rut Depth 
Progression 

Roughness
ProgressionTerrain Type 

K cpa K vp K rst K gp 

Plain 0.23 0.34 2.7 2.43 
Rolling 0.23 0.27 2.17 2.17 
Mountainous 0.23 0.54 1.5 2.17 
Average for 
Study Area 

0.227 0.381 2.122 2.3 

(Source: Thube, 2006 [16]) 
 
Table 4. Details of Different ANN Model Architecture Types. 

ANN Model 
Architecture 

Number 

No. of Hidden 
Layers 

No. of Neurons 
per Hidden 

Layer 

Transfer 
Function Type

1 2 4 TenhAxon 
2 2 4 SigmoidAxon
3 2 5 TenhAxon 
4 2 5 SigmoidAxon
5 2 6 TenhAxon 
6 2 6 SigmoidAxon

7 2 7 TenhAxon 

8 2 7 SigmoidAxon

9 3 4 TenhAxon 

10 3 4 SigmoidAxon

11 3 5 TenhAxon 

12 3 5 SigmoidAxon

13 3 6 TenhAxon 

14 3 6 SigmoidAxon
15 3 7 TenhAxon 
16 3 7 SigmoidAxon
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Fig. 2. Details of Datasets for ANN Model Development. 
 
examining the performance of the developed ANN models from 
an implementation point of view. The details of the datasets 
selected for training, testing, and validation for ANN models in this 
study are given in Fig. 2. 

Given the various ANN model architectures (Table 3), the 
weights of links among the neurons are determined through the 
training process. Designated transfer function types used for the 
training of ANN models and the Neurosolution-5 software have 
been used for analysis in this study. The training process involves 

presenting all example pattern pairs in the training dataset to the 
network and adjusting the weights of the connections according to 
the weight adjustment rules. The training process has been carried 
out for a fixed number of epochs (10,000). 

After the training procedure is complete, the trained network is 
exposed to the testing dataset to check the efficacy of the training 
process. The testing datasets are fed into the trained ANN, and the 
testing error is calculated. If the testing error is within an acceptable 
level, the ANN model is considered reasonable. The model 
comparisons for attempted different ANN models are carried out by 
comparing the mean square error (MSE) values during testing stage. 
The details of MSE and goodness of fit (R2) variations for 
attempted different ANN models are shown in Figures 3 to 6. 
Finally, the ANN models corresponding to the minimum mean 
square error (MSE) and maximum goodness of fit (R2) at the testing 
stage are selected. The details of the different model architectures 
for four ANN models are shown in Figs. 3 to 6. 
 
Validation of ANN Models 
 
After training and testing, the last and most critical step is to verify 
the model using a validation dataset. The details of selected datasets 
for the validation of different ANN models in this study are shown  
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Fig. 3. Variation in MSE and R SQ. for the Cracking Progression 
ANN Model (Suggested Model Architecture No. 15) 
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Fig. 4. Variation in MSE and R SQ. for the Raveling Progression 
ANN Model (Suggested Model Architecture No. 3) 
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ANN Model Architecture Trial No.
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Fig. 5. Variation in MSE and R SQ. for the Roughness Progression 
ANN Model (Suggested Model Architecture No. 15) 
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Fig. 6. Variation in MSE and R SQ. for the Rut-depth Progression 
ANN Model (Suggested Model Architecture No. 5) 
 
in Fig. 2. Ten LVR sections (other than of model development) are 
chosen, and pavement performance data as per the requirements of  
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Fig. 7. Scatter Plot of Observed Distresses vs. HDM-4 and ANN 
Model Predicted Cracking. 
 
ANN and HDM-4 models are collected for these roads. Similarly, 
the details of observed cracking, raveling, rut depth, and roughness 
for these roads are collected by carrying out the visual distress 
survey. Predictions of cracking, raveling, rut depth, and roughness 
are carried out by using the trained ANN models of selected 
architectures, as well as using the HDM-4 model calibration 
coefficient factors (Table 2). Scatter plots have been plotted between 
the observed distresses and the HDM-4 and ANN predicted 
distresses. These scatter plots for cracking, raveling, rut depth, and 
roughness distresses are given in Figs. 7 to 10, respectively. The 
linear relationship, goodness of fit (R2), and root mean square error 
(RMSE) are calculated between the observed distresses and the 
HDM-4 and ANN predicted distresses, as shown in Table 5. 
 
Conclusions  
 
The following conclusions have been made based upon the study 
results: 
1. Four unified ANN based models are suggested for the 

 
Table 5. Details of Statistical Parameters between Observed vs. HDM-4 and ANN Predicted Distresses. 

Serial No. 
Model 

Description 
Linear Relationship Details R2 RMSE 

Cracking Progression 
Observed vs. HDM-4 Predict. 

y = 1.1152x - 0.0768 0.971 1.737 
1 

Cracking Progression 
Observed vs. ANN Predict. 

y = 0.941x - 0.2981 0.977 1.364 

Ravelling Progression 
Observed vs. HDM-4 Predict. 

y = 1.1689x - 1.2155 0.971 4.068 
2 

Ravelling Progression 
Observed vs. ANN Predict. 

y = 0.927x + 0.2156 0.989 2.101 

Rut depth Progression 
Observed vs. HDM-4 Predict. 

y = 0.8187x +1.2184 0.914 0.661 
3 

Rut depth Progression 
Observed vs. ANN Predict. 

y = 0.9671x +0.1296 0.919 0.753 

Roughness Progression 
Observed vs. HDM-4 Predict. 

y =0.8131x + 1.2409 0.852 0.183 
4 

Roughness Progression 
Observed vs. ANN Predict. 

y = 1.0541x – 0.4209 0.969 0.094 
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prediction of cracking, raveling, rut depth, and roughness 
progression for LVR in India. 

2. The suggested unified ANN models are more useful than 
HDM-4 models for distress predictions since the unified ANN 
models is applicable to all types of terrains. The HDM-4 model 
requires separate local calibrations for plain, rolling and 
mountainous terrain types. 

3. Different ANN model architectures were examined by carrying 
out various trials. Through varying the number of hidden layers 
and the number of neurons in each hidden layer, the model 
architecture corresponding to the minimum mean square error 
(MSE) at the testing stage has been suggested for each distress 
type.   

4. The suggested ANN models show a high goodness of fit (R2 
value) between observed distresses and ANN predicted 
distresses of more than a ratio of 0.98 for cracking, raveling, 
rut depth, and roughness progression models at the testing 
stage. This shows an efficacy of the suggested ANN models.  

5. The suggested ANN models show a high goodness of fit (R2 
value) between observed distresses and ANN predicted 
distresses of more than a ratio of 0.97 for cracking, raveling, 
and roughness progression models and more than a ratio of 
0.92 for rut depth progression models at the validation stage. 
This demonstrates an efficacy of the suggested ANN models. 

6. The ANN models show a higher goodness of fit regarding the 
predictability of distresses than that of HDM-4 calibrated 
distresses. This is true for all four different ANN models, 
proving the success of ANN models over HMD-4 pavement 
deterioration models in predicting distresses. 

7. The suggested ANN models will be useful in the accurate 
prediction of cracking, raveling, rut depth, and roughness. The 
models can calculate the appropriate time for various 
maintenance strategies to preserve the huge network of LVR in 
India and other developing countries with similar 
environmental and traffic conditions. 
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