
Technical Paper                                                   ISSN 1997-1400 Int. J. Pavement Res. Technol. 5(3):176-186 

                                                                                              Copyright @ Chinese Society of Pavement Engineering 

176  International Journal of Pavement Research and Technology                                                         Vol.5 No.3 May 2012 

An Automated Filter Bank-Based Pavement Crack Detection System 

Incorporating Standard Compression Coders 
 

Clyde A. Lettsome
1+

 and Yichang (James) Tsai
2
 

 
─────────────────────────────────────────────────────── 

Abstract: Wavelets/filter banks have become a popular area of research, especially in pavement distress, because they can be used 

concurrently to separate the subbands of signal frequencies and analyze the data in time/spatial domains. Because of this, filter banks 

have been studied in automated pavement distress detection and distress segmentation systems research. However, incorporating standard 

compression coders like Set Partitioning in Hierarchical Tree (SPIHT) or Joint Photographic Experts Group 2000 (JPEG2000) into 

automated filter bank-based distress detection and segmentation systems has not been presented. An automated filter bank-based 

pavement crack detection system that can effectively incorporate Standard Compression Coders into a filter bank-based automated crack 

detection and segmentation system has been proposed in this paper. This is the first known attempt to incorporate standard coders into a 

system. The proposed system has been validated using real pavement images provided by the Georgia Department of Transportation 

(GDOT). Preliminary results show that the proposed system can provide usable segmentation results, even at a low bit rate. This allows 

researchers to reduce data storage requirements and, most importantly, increase the speed over the Embedded Zero-tree Wavelet (EZW) 

used in previous filter bank-based automated pavement distress systems. Future research is also discussed. 

 

Key words: Filter bank; JPEG2000; Low bit rate; Pavement crack detection, Pavement distress segmentation, Said Pearlman SPIHT 

Coder, Wavelet. 
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In image processing, filtering and separating noise from a desired 

image is an important process. For example, when images are 

captured by cameras, undesirable data such as atmospheric gases 

and transistor noise are also captured. In the case of space 

observation, atmospheric gases may cause observed objects to 

appear distorted when captured by a camera. In addition to this, 

transistor noise within a camera can introduce noise.  To create 

better images, the removal of atmospheric noise and transistor noise 

from images is highly desired. 

When pavement images are captured, pavement distress is 

embedded in surface textural information (noise). For pavement 

distress detection, it is important that filtering techniques extract 

pavement distresses from surface textural information. This requires 

using filters to reduce surface textural information while preserving 

pavement distress information, which must be done concurrently. 

However, there are obstacles to reducing surface textural noise and 

preserving pavement distress. Take for example Fig. 1. In this 

image, the most prominent feature is surface textural information. 

The surface textural noise and pavement distress data are both 

high-frequency information; hence, to a highpass filter, both have 

similar frequency response characteristics. Therefore, reducing 

surface textural data will lead to some loss of pavement distress 

data. This means surface textural data must be removed carefully to 

ensure that sufficient pavement distress data remains.  
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One method proposed to aid with pavement distress analysis is 

the use of filter banks. The origination of filter banks can be 

attributed to multi-rate processing, which was first introduced by 

Schafer [1]. Later, in 1976, Crochiere, Webber, and Flanagan [2] 

introduced the first subband coding structure, which was intended 

for audio coding. Filter banks were later extended to 

two-dimensional applications by Vetterli [3-4]. His work led to filter 

banks being used for many imaging applications. Later, Woods and 

O'neil [5] were able to show that filter banks can be effectively used 

to provide better quality than Discrete Cosine Transform 

(DCT)-based coders. 

These contributions and, more specifically, the work of Woods 

and O’Neil, showed filter banks could be used as a tool for many 

applications. Since then, filter banks have been used in many image 

applications, including image compression [6-8], image 

enhancement and denoising [9], image interpolation [10], 

water-marking [9], and other applications [11]. 

 

 
Fig. 1. Image of Pavement Containing Distress. 
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Fig. 2. Row 140 of Fig. 1 Prior to Noise Removal. 

 

Researchers have extended the application of filter banks to 

pavement engineering and pavement distress problems [12-16]. For 

example, in automated pavement distress, filter banks can be used to 

compress, detect, isolate, and quantify cracks. In these applications, 

access to subband data is required. In compression applications, 

subband data is compressed and decompressed by using a 

compression codec. In the image processing community, the Joint 

Photographic Experts Group 2000 (JPEG2000) codec is considered 

to be the standard. In the case of crack detection, isolation, and 

quantification, thresholding is used to detect, isolate, and quantify 

cracks in pavement images and video. In all these cases, 

wavelets/filter banks have proven very useful. 

Wavelets/filter banks have captured most researchers' attention in 

pavement engineering for two main reasons. First, unlike Fourier 

and DCT transforms, filter banks allow researchers to analyze any 

image in both the frequency and spatial domain. This is extremely 

attractive when analyzing complex signals. The second and 

probably the most attractive feature of filter banks is their ability to 

aid with image and data compression. For these reasons, many 

researchers have favored applying filter bank approaches to even 

more pavement imaging problems. This has also led to the misuse of 

wavelets/filter banks in some pavement imaging applications. 

Although there has been some success with pavement image 

compression [15] and filter bank-based pavement distress detection 

[3], minimal advances have been made with incorporating the two 

into one system and developing a filter bank-based pavement 

segmentation approach [17]. This is because of how they have been 

applied in the past. 

In previous automated pavement distress systems, Embedded 

Zero-tree Wavelet (EZW) was often the compression method of 

choice because EZW is flexible with respect to the filters used in the 

system. This can be useful when analyzing subband data for 

detection, isolation, and quantification but causes problems with 

overall system speed and compressed data size. By rearranging 

previously proposed filter bank-based pavement systems, it is 

possible incorporate standard compression coders that increase 

system speed, improve compression rate, and maintain data integrity 

at low bit rates. By adding standard compression coders, state 

Department of Transportations (DOTs) can save storage space, save 

data faster, and transmit large quantities of real-time data back to a 

lab with little loss in visual quality. For data transmission, 

compressed data can effectively be transmitted to remote facilities 

that house super computers, where significant amounts of pavement 

data can be processed rapidly and in near real-time. 

In this paper, we analyze popular filter bank-based pavement 

distress detection systems. We discuss both the strengths and 

weaknesses of filter banks to aid in the successful application of the 

technology. Suggestions are made for improvements to filter 

bank-based pavement distress detection methods, specifically for 

better edge detection. We suggest reordering the steps for filter 

bank-based pavement distress detection systems so that standard 

compression coders can be used. 

In Section 2, we explore the information that can be extracted 

from subband information by presenting an analysis of filter banks 

and current filter bank-based pavement distress issues. Section 3 

provides a description of the step rearrangement and methods for 

applying different tools to exploit the available information to 

improve pavement distress detection and compression.  

Conclusions are summarized in Section 4. 

 

Analysis of Current Filter Bank-Based Pavement 

Distress Issues 
 

The goal of a pavement distress detection system is to extract 

pavement distress from a pavement image. Chambon et al. [16] 

defined a crack (distress) to be “a set of pixels that is darker than the 

background (textural surface pixels).” Moreover, they defined a 

crack to be “a set of connected small segments of different 

orientations.” Using this definition, it is evident that the region 

labeled “area of interest” in Fig. 1 contains distress. However, 

because of the large amount of textural information, it is difficult to 

identify crack pixels in Fig. 2, which is row 140 from Fig. 1. Crack 

identification is essentially impossible without prior knowledge of 

the location. This is the challenge researchers experience when 

performing crack detection on pavement distress images. Filter bank 

analysis is performed in 1-dimension at a time with separable filters 

on input images. Therefore, it is challenging to extract crack data 

from surface textural data because surface textural data outnumber 

crack data. Furthermore, both crack and surface textural data exhibit 

many of the same characteristics. 

 

Distress Detection and Surrounding Issues 

 

For filter bank-based pavement distress detection systems, there has 

been one generally adopted approach based on subband coding 

information [14, 18-20].  Rather than using the Fourier transform, 

Zhou [14], preferred filter banks as a tool because of their ability to 

represent any signal as a set of finite length “waves” that can be 

used for pavement distress detection. These finite waves are 

subband coded data. The following introduces the common filter 

bank structure.  

Because of its simplicity and effectiveness, the most common 

structure for many filter bank applications is the two-band structure 

illustrated in Fig. 3. 

Filter bank-based systems are based on the multi-rate equation 
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Fig. 3. Two-band Analysis-synthesis Filter Bank. 

 

 
Fig. 4. Unit Step Function. 

 

[21] for a two-band structure written in the z-domain as 

          
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                 (1) 

Eq.(1) 

where X is the input and 
^

X  is the reconstructed output. There are 

two components associated with this equation. They are the aliasing 

component given by 

      zGzHzGzH 1100 )(
2

1


                           
(2) 

 

and the transfer function term 

      zGzHzGzH 1100 )(
2

1


                            
(3) 

      

 

When the filter coefficients in H and G are correctly chosen, the 

filter bank's alias function reduces to zero, and the transfer function 

term is unity. This leads to exact reconstruction (ER) [22] for the 

system in Fig. 3. 

For images, the analysis subsystem on the left divides the input 

into four frequency subbands: HHk, HLk, LHk, and LLk, where H 

denotes highpass (H) frequency filtering and L denotes lowpass (L) 

filtering. The first letter in the subband notations represents the 

filtering performed horizontally, and the second represents the 

filtering performed vertically. The subscript k represents the level of 

decomposition in an octave-band coded system. The synthesis 

subsystem, on the right side of Fig. 3, recombines each subband so 

that a representation of the original signal is reproduced. 

 
(a) 

 
(b) 

Fig. 5. Unit Step Function after Filtering (a) Filtered with a 

Daubechies Synthesis 9-tap Highpass Filter; (b) Filtered with a 

Daubechies Synthesis 7-tap Lowpass Filter. 

 

If this procedure is used on a pavement image, pavement distress 

and surface textural data would manifest themselves in the form of 

non-zero values, or waves, in each subband containing highpass 

information. Current distress detection methods determine or 

segment distresses by comparing the non-zero values in the 

highpass subbands to a predetermined threshold. Any value larger 

than the threshold is possible pavement distress. Because of the 

simplicity and ability of the approach, it is highly attractive. 

However, there are two issues that plague this pavement distress 

detection method. First, comparing the highpass data to a threshold 

to determine a distress could be problematic. Second, 

downsampling will add some distortion to the results. 

To better understand the first issue surrounding a threshold-based 

pavement distress detection method that uses highpass subband 

information, consider this method on the step function shown in Fig. 

4. When it is filtered by the Daubechies synthesis filter coefficients 

[23], the highpass and lowpass subband results are shown in Fig. 

5(a) and 5(b). 

The lowpass channel is a scaled version of the original step 

function, while the highpass channel shows a "wavelet" that can be 
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Fig. 6. Unit Impulse Function. 

 

 

 

(a)  

 
(b) 

Fig. 7. Unit Impulse Function after Filtering (a) Filtered with a 

Daubechies Synthesis 9-tap Highpass Filter; (b) Filtered with a 

Daubechies Synthesis 7-tap Lowpass Filter. 

 

used to help localize the area of discontinuity (edge) in a given 

signal. The local minimum and the local maximum values in Fig. 

5(a) indicate the area of discontinuity for the step function. For this 

example, a threshold is set at |±0.4|. Therefore, only two values 

meet these thresholds. Although this indicates the edge, this is a 

very simple example, and closer analysis of the method makes it 

apparent why this method is not the best one to use when combining 

it with a threshold to find a discontinuity. 

The impulse response shown in Fig. 6 contains two areas of 

discontinuity about t =11. 

Because these two areas are within close proximity, non-zero 

values in the highpass channel associated with each region of 

discontinuity will Overlap and Add (OLA), as shown in Fig. 7, and 

will be composed differently from the non-zero values illustrated in 

Fig. 4. It is possible to see that there are three values equal to or less 

than -0.4. Furthermore, there is now a value of -0.8. This leaves the 

user with the dilemma of choosing between |±0.4| or |±0.8| as the 

appropriate threshold. 

Thus far, only 1-dimensional signals have been illustrated. 

However, pavement distress detection on images is a 2-dimensional 

process. This means the OLA, experienced because of the close 

proximity of discontinuities, is further amplified when the second 

dimension is considered. Both of these facts lead to significant false 

positives and false negatives in pavement distress detection. 

A second and lesser reason for the filter banks' poor performance 

for pavement distress detection is the sampling found in subband 

coding. This sampling leads to a loss of translation variance and 

produces large numbers of additional artifacts. This compounds the 

problems encountered when using a filter bank-based pavement 

distress detection system where thresholding is used on subband 

information. 

 

Detection and Compression Solutions and the Trade-offs 

 

In the literature, one method has been suggested for improving 

detection. Zhou [15] suggested reducing the filter lengths used in 

order to reduce OLA. However, reduction in filter length does not 

allow for the use of standard compression coders, such as the Said 

Pearlman (S+P) SPIHT coder [6] and JPEG2000 [7]. Instead, 

inferior compression methods such as the EZW are used at the 

expense of image quality, overall system speed, and final storage 

size. These coders use the Daubecies 9/7 filters, which are not short 

and contain a "tail" outside of the filters' main lobe. This leads to the 

OLA issue discussed in subsection 2.1. Furthermore, shorter filters 

do not allow for the proper channel separation needed for effective 

filter bank-based compression. Because of the OLA and channel 

separation issues, we propose a different approach to pavement 

distress detection in which pavement distress detection does not 

occur after decomposition but, instead, occurs in two steps. A 

preliminary statistical-based detection is performed before 

decomposition with a filter bank-based approach occurring after 

reconstruction. These approaches will not only be beneficial to 

improving detection, but will also be beneficial to filter bank-based 

pavement distress segmentation methods.  

 

Restructuring Pavement Distress Detection Systems 

and Results 
 

In this section, an improved pavement distress detection method is 
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Fig. 8. Restructured Automated Pavement Distress Detection 

System. 

 

proposed. This method will make it possible for filter bank-based 

pavement distress systems to use standard compression coders in the 

same system. The inverse correlation between compression and 

detection will be eliminated by uncoupling detection and 

compression so the detection process is moved from between the 

analysis and compression coder. 

For the experiments, the S+P SPIHT coder that has long been 

established as one of the standard filter bank-based compression 

coders is employed. In the restructuring and reformulating of this 

system, certain assumptions are made. First, in order to focus on the 

main objective, the system will include a uniform artificial lighting 

source. By making this assumption, shadows on the pavement 

surface can be ignored. Also, pavement images that contain road 

markings will not be used. A diagram of a newly restructured 

system is illustrated in Fig. 8. This design is a restructured version 

of the system proposed by Zhou [14]. 

 

Preprocessing 

 

Because surface textural information interferes with pavement 

distress detection, a method to reduce the impact of surface textural 

information that will isolate pavement distresses is proposed. This 

will isolate pavement distresses. A statistical-based approach similar 

to the one used by Rajan [24] is proposed. 

For this statistical approach, the mean, 


X , of the captured image 

is found where 

 

nm

nmX
x

i

nm

*

,11 
                                  (4) 

and the variables m and n are the dimensions of the captured image 

Xi. Using Eq. (4), the standard deviation(s) of a given image is 

determined using the equation 

   
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                     (5) 

Then Eqs. (4) and (5) are used to approximate the bottom of the 

surface textural data (in the z direction of an image). This is based 

on the intensity data and the approximate location is given by the 

equation 

sxLst                                             (6) 

where Lst is the approximate lower location or approximate lowest 

intensity value of the surface textural data. To eliminate the surface 

textural data, the following logic is used to normalize values greater 

than Lst. 

 
       

 



 


otherwiseX

sxnmXorxnmXandsxnmXifx
nmX

nmi

iii

pp

,

,,,
, (7)  

To better understand this, consider Fig. 1. This image has a mean 

of 79.22 and a standard deviation of 21.11. Using Eq. (6), the 

approximate location of the surface textural data is 58.11. With this 

information, surface textural data is normalized to the mean using 

Eq. (7). For a different view of this procedure, row 140 from Fig. 1 

is selected. Fig. 9(a) shows the captured row's data, and Fig. 9(b) 

shows the preprocessed row after the normalization or surface 

textural removal. The result of this process on Fig. 1 is shown in 

Fig. 10. 

It is clear that a significant amount of noise has been removed 

from the image; therefore, less noise will be stored in automated 

pavement distress detection systems. 

Distortion in the form of surface pavement discoloration and 

debris is not addressed with this method because in most cases, 

surface discoloration and surface debris will not change the mean or 

standard deviation significantly and, more importantly, surface 

discoloration will not affect distress values. Unless the discoloration 

penetrates the surface and protrudes into the pavement and is within 

close proximity to the pavement distress, the distress intensity will 

not be affected. Thus, these have little effect and are not considered 

in this analysis. 

 

Repositioning Detection 

 

In an effort to improve pavement distress detection while imposing 

less of a negative impact on compression, the pavement distress 

detection process is removed from between the analysis and 

compression coder. One option for a new location is to move the 

detection after the compression decoder and before the synthesis 

process. However, this solution can introduce a problem. If 

detection is performed after the compression decoder, the detection 

algorithm will be dependent on the highpass that has been eroded 

from high subbands due to compression, and the problem is only 

amplified as the compression rate is lowered. To see this, consider 
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(a) 

 
(b) 

Fig. 9.  Illustration of Online Surface Texture Removal (a) Row 

140 of Image Prior to Surface Texture Removal; (b) Row 140 of 

Image after Surface Texture. 

 

 
Fig. 10. Image Preprocessed to Surface Texture. 

 

Fig. 11, which shows subband information for a sample image. This 

image has been decomposed to one level and has four subbands. 

 
(a) 

 
(b) 

 

 
(c) 

 

 

(d) (d)  

Fig. 11. Illustration of Image Subbands for Pavement Distress 

Image Coded at Four Different Bit-rates (a) 1 bpp; (b) 0.75 bpp; (c) 

0.5 bpp; (d) 0.25 bpp. 
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(a)                    (b)  

 
(b)                      (d) 

 

Fig. 12. Illustration of distress at different orientation (a) 0 degrees 

angle; (b) 45 degrees angle; (c) 135 degrees angle; (d) 90 degree 

angle. 

 

Through close inspection, one can see that information in any 

subband containing highpass information is being eroded as the 

bit-rate is reduced. Thus, this approach is not suitable based on the 

design goals. Consequently, a two-step detection approach is 

utilized. One method is statistically based, and the other is filter 

bank-based. Both processes are positioned outside the entire filter 

bank system, as illustrated in Fig. 8. The first process is placed after 

the preprocessing step, while the second detection process is placed 

after the signal restoration step. The justification for both processes 

will be outlined in the following two subsections. 

 

Preliminary Detection 

 

The preliminary detection process incorporated into our method is 

computationally less expensive than Zhou's method [14]. This is 

simply based on the positioning of the detection method. This 

detection method occurs before the analysis and, thus, it is not 

dependent on subband domain data. This means two things. First, 

detection is not affected by the OLA associated with the 

decomposition of an input image into subbands. Second, distress is 

detected without requiring numerous multiplies and adds associated 

with convolution in the decomposition of an image. That is to say, 

decomposition is not performed unless distress is suspected, as 

illustrated in Fig. 8. This potentially increases the speed of this 

approach, which is very attractive because this will be used online 

(in the field). 

To effectively detect pavement distress, it is necessary to look at 

pavement distress from a 3-dimensional view even though the 

source is 2-dimensional.  In Section 2, we discussed how much 

easier pavement distresses can be found using two-dimensional data 

and intensity instead of one-dimensional data and intensity, as done 

in many filter bank-based pavement distress methods. Because of 

the difficulty associated with analyzing pavement distress in one 

and two dimensions, the proposed method approaches the distress 

detection process from a 3-dimensional point of view in which x and 

z are the image's width and length, and intensity represents an 

approximation for depth. The depth (intensity) cannot be considered 

alone. The intensity data of any given pixel becomes relevant when 

it is adjacent to data of similar intensity. Through inspection of a 

pavement distress image (such as Fig. 10), there are a few more 

characteristics that distinguish distress pixels from noise. Pavement 

distress appears to be more linear, while the noise appears to be 

more random. Finally, pavement distress often appears to be darker 

than other regions. 

Utilizing this information, a 3x3 pixel window is employed in the 

pavement distress method to find dark, possibly linear distress 

situation regions. To define a dark pixel or distress, the equation 

sxLd 2                                            (8) 

is used where Ld represents distress intensity or location relative to 0 

(intensity). When a pixel fitting this criterion is found, the 3x3 

window is positioned above it so that the pixel is in the center of the 

window. Any dark pixel in the window is classified as part of a 

possible linear combination or an isolated dark spot. If surrounding 

pixels form any of the linear patterns found in Fig. 12, and their 

values satisfy Eq. (8), then there is a high probability that there is 

pavement distress. 

Being “almost certain” that a distress is present, however, is not 

good enough. It may be necessary that a given distress threshold be 

met in each captured image to satisfy certain criteria for various 

pavement distresses. A common measure in pavement distress 

research has been the Universal Crack Index (UCI). From the 

available data, a measure similar to the UCI can be developed. To 

calculate this measure, which we call Percentage of Pavement 

Distress (PPD), a threshold must first be determined. This threshold 

is used as a pseudo-depth value that indicates a distress and is based 

on pixel intensity. This value can be any value larger than Lst. The 

pixel values from the preprocessed image, Xp, are binarized by using 

the following equation:  

 
 





 


otherwise

TnmXif
nmB

dp

d
0

,1
,                            (9) 

where Bd indicates binarized pavement distress and Td is the user’s 

selected threshold. This threshold can be set to one (σ) or two (2σ) 

standard deviations below the overall image mean value. The 

Percentage of Pavement Distress is then calculated by the equation 

                                                       

 

nm

nmB
PPD

d

mm

*

,11 
                              (10) 

Based on the PPD results, the user can decide to classify the 

image as possibly containing or not containing distress. 

 

Online Detection 

 

Implementing a second distress detection method may seem 
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Fig. 13. Noise Reduction Due to 0.25 bpp Image Compression. 

 

redundant, but this distress detection process assists the pavement 

distress segmentation method by assisting with the localization of 

pavement distress. The spatial and frequency data from filter banks 

can be useful for this localization. Some adjustments need to be 

made to the conventional subband coder to allow for its intended 

purposes. 

We begin the adjustment by first recalling the multi-rate equation 

for a two-band structure written in the z-domain as 

          

          zGzHzGzHzX

zGzHzGzHzXX

1100

1100

2

1

2

1






                (11) 

where x[n] is the input and 𝑥̅[n] is the reconstructed output. There 

are two components associated with this equation. They are the 

aliasing component given by  

        zGzHzGzH 1100
2

1
                         (12) 

and the transfer function term 

        zGzHzGzH 1100
2

1
                            (13) 

Ideally, the filter bank's aliasing term should reduce to zero, and 

the transfer function term is unity. However, because our design 

criteria have changed, this is no longer true. We are no longer 

1. designing a subband coder for multi-level decomposition,  

2. designing a subband coder for compression, 

3. concerned about channel separation necessary for multi-level 

decomposition,  

4. in need of half-band filters,  

5. in need of filters that add little distortion, or 

6. in need of  avoiding the loss of translation variance due to 

sampling [12]. 

Given these criteria, Haar filters that have been re-scaled are used 

to allow the transfer function to reduce to 0.5. This means the filter 

coefficients will be [0.5 0.5] for the lowpass filter coefficients and 

[0.5 -0.5] for the highpass filter coefficients. The highpass filters 

can be used with a segmentation algorithm to detect and segment 

pavement distress with little distortion. 

 

Image Restoration 

 

Now that the pavement distress detection has been uncoupled from 

the compression, it is possible to achieve higher compression rates, 

however determining the amount of compression that can be 

tolerated is also necessary. After compression and reconstruction of 

a signal in any lossy system, as with automated pavement distress 

systems, the output signal is not equivalent to the input signal (X ≠ 
^

X ). This means any analysis of the output signal,
^

X , is performed 

on distorted data. Unfortunately, compression coders are not linear, 

and, thus, the original input signal cannot be reconstructed. 

However, some data may be restored by using the type of data that 

is most vulnerable. 

As bit-rate is lowered, isolated pixels and pixels closest to zero 

(in this system, values closest to the mean) are most affected. This 

has both positive and negative consequences. Because noise is 

usually isolated and random, noise is affected more as the bit-rate is 

lowered and is, thus, a good consequence of lowering bit-rate. This 

noise reduction due to compression can be seen when Fig. 13 is 

compared to Fig. 10. 

However, as the bit-rate is lowered, pavement distress classified 

as hairline distress is also affected because hairline distress is 

relatively isolated and often is not as dark (hence less intense) as 

other pavement distresses. This means users must balance the 

importance of hairline distress detection and isolation with the need 

to eliminate noise and the need to compress images to allow 

efficient data storage. 

Although, the compression algorithm eliminates high frequency 

noise, it also introduces some noise because of the loss of high 

frequency information. In effect, it creates a rippling distortion in 

areas where high-frequency information was removed or attenuated. 

This is similar to the Gibbs phenomenon encountered when a 

lowpass filter is used to filter areas of discontinuity. Through closer 

inspection of the highlighted region of Fig. 13, for example, there is 

a light but large area of gray that was not apparent in Fig. 10. This 

may be eliminated with the assistance of the mean and standard 

deviation found by the preprocessing discussed in Section 3.1. The 

distortion values are normalized by using the following rules: 

 
     

 

























otherwiseX

sxnmXorxnmXandsxnmXifx
nmX

nmi

ii

pp

,

^^

,,5.0,
, (14)  

Applying these rules to Fig. 13 yields the results seen in Fig. 14 

removes some noise from the compressed image, making it closer in 

appearance to Fig. 10 with some additional surface textural 

information removed.  

However, this also means that the statistical information, such as 

mean and standard deviation information for each image must be 

stored with the pavement distress image and GPS location. 

Adding the signal restoration step would be optional. Usage will 

be based on other factors and design criteria, such as the type of 

segmentation algorithm used. 
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Fig. 14. Noise Reduction from Normalization. 

 

  
(a)                      (b) 

Fig. 15. New Pavement Distress Segmentation Method Performed 

on GADOT Image 1D579384: (a) Ground (b) S+P SPIHT 

Compressed Result at 0.25 bpp. 

 

Test Results 

 

Now that we have illustrated how standard compression coders can 

be incorporated into filter bank- based automated pavement distress 

systems, we will show some segmentation results. In this work, a 

filter bank-based segmentation method was proposed. However, 

other segmentation methods, such as Canny, Dynamic Optimization, 

and Iterative Clipping segmentation methods may be used to 

perform the segmentation. The proposed system has been further 

validated using real pavement images provided by the GDOT. Fig. 

16(a) and 17(a) show the ground truth of two pavement distress 

images supplied by the GDOT. These images were compressed 

using the proposed system, segmentation was performed using the 

filter bank-based segmentation method, and the results are shown in 

  
(a)                     (b) 

Fig. 16. New Pavement Distress Segmentation Method Performed 

on GADOT Image 1D560029: (a) Ground (b) S+P SPIHT 

Compressed Result at 0.25 bpp. 

 

 
(a)                  (b) 

Fig. 17. New Pavement Distress Segmentation Method Performed 

on GADOT Image 1D560030: (a) Ground (b) S+P SPIHT 

Compressed Result at 0.25 bpp. 

 

Figs. 16(b) and 17(b). 

From these two results, the results mirror the ground truth closely 

despite the 0.25 bpp compression rate. Experiments were completed 

on additional GDOT images, and the quantitative results are shown 
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Table 1. Buffered Scoring Metric on the Compressed Image. 

 

in Table 1. A buffered scoring metric developed by Tsai et al. [17] 

was used to quantify the effectiveness of the method. For this metric, 

values of 1 to 100 are assigned to results with 100 being perfect 

segmentation and 1 being poor segmentation. The score for the filter 

bank-based segmentation method is shown in the table. In addition, 

the signal-to-noise ratio is given for each compressed image. 

The preliminary results show that the proposed method can 

provide better segmentation results at a low bit rate. Because these 

standard coders yield better signal-to-noise ratios than EZW and 

enhanced EZW methods used previously in similar systems, less 

distortion is produced, thus helping many detection algorithms 

detect pavement distress that were not designed to be used on 

compressed images. Furthermore, this proposed system reduces data 

storage needs and, more importantly, it increases the speed of 

compression over the time required for the EZW [6] used in 

previous filter bank-based automated pavement distress systems. 

 

Conclusions and Recommendations 
 

In this paper, a new, automated filter bank-based pavement crack 

detection system is proposed. Unlike other known automated filter 

bank-based systems, the proposed method allows the standard 

compression coders to be used. To make this possible, we propose 

that online distress detection and quantification of pavement distress 

not depend on subband data for detection. This allows for a more 

accurate calculation of a crack index and removes the need for 

shorter filters so that standard compression coders like the Said 

Pearlman SPIHT coder and JPEG2000 that use longer filters can be 

incorporated into these systems. The proposed system has been 

further validated using actual pavement images provided by the 

GDOT. The preliminary results show that the proposed system 

allows for better offline reconstructed results at lower bit rates, 

which will lead to better segmentation results, as is shown in the 

experimental results. The findings in this work are preliminary and 

more comprehensive image testing is recommended. In future work, 

we will experiment with other techniques to improve the overall 

system speed and noise reduction capability, and we will use other 

proven edge detection methods. The proposed system has the 

potential to enhance existing image acquisition processes, one of the 

important components in automated pavement distress detection, by 

allowing end users to use the standard encoders to compress images 

(reduce image processing and image storage size) while maintaining 

the distress detection accuracy. In addition, state DOTs could 

transmit large quantities of real-time images or video of pavement 

data to remote locations with little loss in signal quality. Tests can 

be conducted to measure the benefit of reducing processing time 

and storage. 
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