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─────────────────────────────────────────────────────── 

Abstract: Pavement distress identification and classification are critically important for pavement health management. This paper 

presents a new method for pavement distress identification based on the dual-tree complex wavelet transform (DT-CWT). It takes a 

multi-scale and multi-resolution approach to decomposing a pavement image into multi-level subbands, with high frequency subbands 

containing distress features selected as the subbands of interest. After thresholding is performed on wavelet coefficients to reduce noise, 

multi-level sub-images were constructed through inverse DT-CWT. The merit of the presented method rests on the shift invariance and 

good directional selectivity in DT-CWT while maintaining high computational efficiency. Numerical and experimental analysis results 

confirmed its substantial performance enhancement over ordinary Discrete Wavelet Transform (DWT), as commonly reported in 

literature. 
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Pavement deteriorates over time due to traffic loading and 

environmental factors [1]. The most commonly seen pavement 

distress is surface cracking, which can be classified as longitudinal, 

transverse, diagonal, block, and alligator. Traditionally, pavement 

distress evaluation is conducted manually by engineers who visually 

inspect the distressed surfaces. Such evaluation involves high 

degrees of subjectivity, is labor intensive, and is sometimes not 

productive. With the advancement of automated video imaging 

techniques, pavement distress measurement for pavement 

management has gained new interest [2, 3]. In principle, automated 

techniques use video cameras installed in a moving vehicle to 

capture images of pavement. The images are subsequently 

processed to recognize and quantify the degree of pavement 

distress.  

Effective pavement image processing is an active research area, 

and many efforts have been reported on developing pavement 

distress detection and recognition algorithms. Specifically, 

thresholding and edge detection are widely used for extracting 

features on pavement distress from recorded images. Traditional 

edge detection techniques, such as gradient based edge detector, 

Laplacian of Gaussian, zero crossing, and Canny edge detector, 

perform analysis at only one spatial scale. As a result, they are 

sensitive to background noise [4]. Since pavement images have 

various details at different scales, wavelet transform has been 

widely investigated for edge detection in pavement images, given its 

capability in multi-scale singularity detection, which corresponds to 

distress in pavement images [5]. Zhou et al proposed a pavement 

distress detection algorithm based on discrete wavelet transform 
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(DWT), by which the image is decomposed into different frequency 

subbands [6-7],. The magnitudes of wavelet coefficients represent 

the level of distress. In Javidi et al two base wavelets, defined as 

partial derivatives of a two-dimensional smoothing cubic spline 

wavelet function, are applied to measuring the wavelet coefficient 

maxima across the scales [8]. The crack pixels in pavement distress 

image are separated from the background noise.  

The multi-scale nature of wavelet transform and its general 

robustness to noise makes it an attractive tool for pavement image 

processing. Many wavelet-based pavement distress identification 

methods reported in the literature involved the decimated discrete 

wavelet transform, which is computationally efficient [9]. A 

common drawback, however, is that such methods also suffer from 

shift variance and lack of directionality. Both features, however, are 

required for multi-scale analysis. The undecimated versions of 

wavelet transform, such as ridgelet transform and beamlet transform, 

are free from shift variance. Accordingly, they have been 

investigated for pavement distress analysis [10-11]. Similarly, an 

undecimated wavelet transform integrated with a trous algorithm is 

investigated in Wang et al for multi-scale edge detection [12]. The 

result shows that it outperforms the conventional edge detection 

techniques. However, undecimated wavelet decomposition requires 

higher computational load and yields high redundancy in the 

computed wavelet coefficients, making the subsequent 

computational processing (e.g., edge detection and classification) 

expensive [9]. 

To tackle the above problems, a new approach to pavement 

distress analysis based on the dual-tree complex wavelet transform 

(DT-CWT) [9] is investigated in this paper. DT-CWT is 

characterized by shift invariance and directional selectivity as 

required for pavement distress identification, and maintains high 

computation efficiency. Multi-scale and multi-resolution analysis 

using DT-CWT is performed on pavement images to obtain 

multi-level subband information, and wavelet thresholding 

technique is applied to reducing noise at each level. The selected 

subband information is then used to construct the sub-image for 

distress analysis. Numerical and experimental results demonstrate  
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Fig. 1. Illustration of Wavelet Decompositions of a) DWT and b) DT-CWT.  

 

that DT-CWT presents a substantial performance enhancement in 

distress detection over ordinary Discrete Wavelet Transform 

(DWT). 

The rest of the paper is structured as follows. After introducing 

the theoretical background of dual-tree complex wavelet transform, 

details of its application to pavement distress analysis are discussed.  

Performance comparison with DWT is also provided. The 

effectiveness of the technique is experimentally evaluated. Finally, 

conclusions are then drawn. 

 

Theoretical Background 

 

Wavelet transform is a signal decomposition technique, which, by 

stretching and shifting a base wavelet along the timeline, quantifies 

the degree of matching or correlation between the base wavelet 

(which is mathematically defined) and the signal. Compared to the 

Fourier transform that involves infinitely oscillating sinusoidal basis 

functions, wavelet transform is based on locally oscillating 

functions, making it well suited for multi-resolution time-frequency 

analysis. Using the base wavelets ѱ(t) and scaling function ϕ(t), a 

one-dimensional real-valued signal x(t) can be decomposed as:   
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where c(t) represents a set of scaling coefficients, and d(j, n) denotes 

the wavelet coefficients. By applying low-pass filtering h0(n), 

high-pass filtering h1(n), upsampling, and downsampling operations, 

the above wavelet decomposition can be implemented in a 

computationally efficient fashion as discrete wavelet transform 

(DWT). A typical decimated decomposition process of DWT is 

shown in Fig. 1a.  

Although DWT in the decimated form has been widely used in 

image compression and restoration, it suffers from two main 

limitations: 1) lack of shift invariance and 2) low directional 

selectivity. As a result, a small shift in the input image may lead to a 

very different set of wavelet coefficients in the output. Because of 

the low directional selectivity resulting from the wavelet filters 

being separable and real, it is difficult to accurately recognize 

diagonal features, which is important in pavement distress analysis. 

Complex wavelet transform can solve these two problems by 

emphasizing positive frequency and rejecting negative frequency 

that occur in real DWT [9]. However, it is difficult to implement 

inverse transform in complex wavelet transform, which is needed 

for image compression and restoration. In comparison, the dual-tree 

complex wavelet transform [9] aims to enable perfect reconstruction 

using complex wavelet, by means of two parallel decimated filter 

band trees, with real-valued coefficients generated in each tree. It 

exhibits the properties of complex wavelet transform in shift 

invariance and good directionality. To analyze a one-dimensional 

real-valued signal, DT-CWT decomposition can be expressed by a 

complex shifted and dilated mother wavelet ѱ(t) and scaling 

function ϕ(t) as: 
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where sj0,l is a set of scaling coefficient, cj,l is a set of complex 

wavelet coefficients, and j and l refer to the index of shifts and 

dilations where Z is an natural number. The superscripts r and i 

denote the real and imaginary part, respectively, which are 

computed using separate filter banks such as low-pass/high-pass 

filter pair h0(n) and h1(n) for the real part, and low-pass/high-pass 

filter pair g0(n) and g1(n) for the imaginary part, as illustrated in Fig. 

1b.  

For image processing, the DWT process applies one separable 

low-pass/high-pass filter pair on the row and column elements of an 

image, and thus produces four sub-images (LL, LH, HL, HH) at 

each level, as shown in Fig. 2a. The sub-image LL is the 

approximation of the original image, whereas the sub-images LH 

and HL keep the main information in the horizontal and vertical 

directions, respectively. Sub-image HH contains the diagonal 

features. This means that DWT has only three-directional (0o, 45o, 

90o) selectivity. For DT-CWT, it applies two low-pass/high-pass 

pairs on the row and column of the image, thus generating one 

approximate image LL, and six sub-images (two LH, two HL, and 

two HH) of complex coefficients at each level [13]. These six 

sub-images are oriented at the angles of ±15o, ±45o, and ±75o, as 

illustrated in Fig. 2b. Therefore, DT-CWT enables better resolution 

and directionality selectivity as compared to DWT. This is essential 

in pavement distress analysis.  

 

DT-CWT for Pavement Distress Analysis 

 

A pavement distress image is mainly composed of three types of 

information: 1) non-uniform background (low-frequency signal), 2)  
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Fig. 2. Bandwidth and Orientation of Sub-images Resulting from a) DWT and b) DT-CWT Two-Level Decomposition.  
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Fig. 3. Pavement Distress Analysis Based on DWT and DT-CWT. 

 

pavement distress (e.g., crack, high frequency at the distress edge), 

and 3) noise from heterogeneous materials and granularity (high 

frequency, but low amplitude random signal) [3]. Through 

multi-resolution and multi-scale analysis enabled by the wavelet 

transform, these three types of information can be decomposed into 

different frequency subbands. Generally, the background 

information resides in the low frequency subband (LL) as an 

approximated or smoothed original distress image. The distress and 

noise caused by heterogeneous material are transformed into the 

high frequency subbands (HL, LH, HH) with different amplitudes 

for different wavelet coefficients. By using wavelet thresholding 

methods, the high-amplitude wavelet coefficients representing 

pavement distress can be extracted. Based on this consideration, a 

multi-scale pavement distress analysis method using dual-tree 

complex wavelet transform (DT-CWT) is developed, as shown in 

Fig. 3. To illustrate its merit in shift invariance and directional 

selectivity as required in pavement distress analysis, the ordinary 

DWT is performed as well for comparison.  

A pavement image is first decomposed into multi-level frequency 

subbands by DWT and DT-CWT, respectively. Specifically at each 

level, the image is decomposed into one low frequency subband LL 

and three high frequency subbands, labeled as HL, LH, and HH. 

The high frequency subbands preserve the distress information in 

the horizontal, vertical, and diagonal directions. The DT-CWT 

decomposes the pavement image into one low frequency subband 

and six high frequency subbands, which preserve the distress 

information in the direction of ±15o, ±45o, and ±75o, respectively. 

To extract the distress information in the pavement image, the 

wavelet coefficients in the high frequency subbands (HL, LH, HH) 

are chosen to construct the distress image by removing the 

background.  

Since noise from a heterogeneous material also resides in the high 

frequency subbands and is represented as low-amplitude wavelet 

coefficient, thresholding is then performed to suppress the noise.  
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Fig. 4. Circular Disc Image [12] with Obtained Multi-level Edge Sub-images Using b) DWT and c) DT-CWT. 
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Fig. 5. a) Pavement Distress Image and Multi-level Subband Decomposition Using b) DWT with Thresholding, c) DT-CWT Without 

Thresholding and d) DT-CWT with Thresholding. 

 

There are typically two thresholding methods, namely 

soft-thresholding (also called shrinkage function) and 

hard-thresholding [14]. Soft-thresholding takes the argument and 

shrinks it toward zero by the threshold T as: 

 

   0,Txmaxxsgn)x(T                              (3) 

 

Hard-thresholding keeps the argument if it is larger than the 

threshold T, expressed as: 

 Tx1x)x(T 
                                   

(4)
 

Otherwise, the argument is set to be zero. The value of the 

threshold is determined according to the VisaShrink method [15] as:  

Mlog2T 
                                        

(5)
 

where σ denotes the noise variance, and M is the number of samples. 

In the present study, hard-thresholding is chosen for its simplicity 

and complex-valued property of wavelet coefficients in DT-CWT. 

After performing thresholding, the high-amplitude wavelet 

coefficients representing the distress are preserved in the high 

frequency subbands, and are used to construct distress image based 

on the inverse wavelet transform.  

At each level/scale of wavelet transform, DT-CWT has six 

subbands that preserve the information with different orientations. 

This gives it better directional selectivity in the constructed distress 

image as compared to the DWT. To show its merit, an image of 

circular disc [12], with its edge simulating the crack in pavement 

image at different orientations, is used as an input. The 

high-frequency subbands (HL, LH, HH) of DWT and CWT are used 

to construct the edge sub-images at four different levels, as shown in 

Fig. 4. The results show that near-perfect edge information of 

circular disc has been extracted by DT-CWT at different levels, 

confirming its merit in shift invariance and good directional 

selectivity. In contrast, the sub-images obtained by DWT are 

associated with ringing effect and low resolution. 
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Fig. 6. PSNR Analysis Result for Multi-level Sub-images.  

 

Experimental Evaluation 
 

The performance of the developed image processing method is 

evaluated using different pavement images for different distress 

types and severities, and the results of DT-CWT and DWT for one 

distress image with diagonal crack are presented in Fig. 5. 

For purpose of comparison, the results of constructing multi-scale, 

sub-images of the crack using DWT with thresholding, DT-CWT 

without thresholding, and DT-CWT with thresholding are illustrated 

in Fig. 5b-d, respectively. The effect of ringing and discontinuity 

can be seen in Fig. 5b, associated with DWT. The result from 

DT-CWT is significantly better. Especially when wavelet 

thresholding is applied, the noise present in the sub-images of Fig. 

5c is further removed, as shown in Fig. 5d, indicating the effect of 

thresholding for distress edge retention.  

To quantitatively evaluate the performance of DT-CWT and DWT, 

the experimental results presented above are analyzed using the 

criterion of peak-signal-to-noise-ratio (PSNR). The criterion 

measures the similarity between the extracted distress feature and 

the original image as the ground truth image in image segmentation 

[13] and compression [16]. It is based on the variance of difference 

between the obtained sub-image and original image, expressed as: 

     y,xIy,xIy,xr


                                  (6) 

where  y,xI  and  y,xI


 are the normalized pixel values in 

obtained sub-image and original image, respectively.  The variance 

is calculated as: 
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where M and N are the pixel numbers in the row and column of the 

image, respectively. As a result, PSNR is defined based on the 

variance of the difference as:  

   2
r10 /1log10dBPSNR                               (8) 

A high value of PSNR indicates a high similarity between the 

obtained sub-image and the original image. In Fig. 6, the calculated 

PSNR values of multi-level sub-images of DT-CWT without 

thresholding, DWT with thresholding, and DT-CWT with 

thrseholding are illustrated. It is seen that the PSNR values of 

multi-level sub-images using DT-CWT with threshoding are better 

than the ones using the other two methods. Due to noise 

deterioration, the PSNR values of sub-images using DT-CWT 

without thresholding are less than that from DWT with thresholding. 

Of these three methods, the sub-images at level 3 present the highest 

PSNR value.  

  

Conclusion  

 

Advanced image processing technique is critical to automated 

distress evaluation and classification for pavement distress 

identification and maintenance. A DT-CWT-based multi-scale 

distress analysis method for distress feature extraction is presented 

in this study. Compared to the ordinary DWT reported in the 

literature, the DT-CWT approach has yielded better performance 

due to its inherent shift invariance and high directional selectivity. 

The method is evaluated numerically and experimentally, and good 

results have been obtained. The multi-scale analysis capability of 

the developed method provides higher flexibility and insight into 

pavement distress evaluation. The DT-CWT algorithm has been 

implemented using two separable DWTs, thus maintaining high 

computational efficiency for real-time applications.  Research is 

being continued to analyze the effect of scale and features selection 

for pavement evaluation and classification.  
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