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─────────────────────────────────────────────────────── 
Abstract: In situ strain monitoring is critical to ensure the continued safe and reliable operation of various civil structures, such as dams, 
bridges, and buildings. In situ strain monitoring is especially important for structures that may experience large strains. In this project, a 
new coaxial cable Bragg grating (CCBG) is developed as a strain sensor, and the sensor's capacity for large range strain measurement is 
demonstrated for the first time. The sensor device is comprised of regularly spaced periodic discontinuities along a coaxial cable. The 
discontinuities are fabricated using a computer numerical controlled (CNC) machine to drill holes in the cable. Each discontinuity 
generates a weak reflection to the electromagnetic wave propagating inside the cable. Superposition of these weak reflections produces a 
strong reflection at discrete frequencies that can be explained by the Bragg grating theory. By monitoring the resonant frequency shift of 
the sensor's reflection or transmission spectra, strain measurement sensitivity of 20µε and a dynamic range of 50000 µε (5%) were 
demonstrated for axial strain measurements. The experimental results show that the CCBG sensors perform well for the large strain 
measurement needed in structural health monitoring (SHM). 
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In the past two decades, fiber optic sensors have found many 
successful applications in structural health monitoring (SHM) due to 
their unique advantages, such as compactness, high resolution, and 
immunity to electromagnetic interference, remote operation, and 
multiplexing capability [1]. In general, fiber sensors have relatively 
small dynamic range due to the limited deformability of silica glass. 
Various strain transfer mechanisms have been investigated to extend 
the dynamic range of the sensor devices. For example, through a 
specially-designed sensor package, a high strain resolution of 10µε 
within a large dynamic range (12,000µε) has been demonstrated 
using an extrinsic Fabry-Perot interferometer (EFPI) [2]. However, 
when embedded into the structure, the signal transmission line (i.e., 
the optical fiber) can easily break when it is subjected to a large 
strain (about 1%) and/or a shear force, causing serious challenges 
for sensor installation and operation. As such, fiber optic sensors 
have restricted applications in heavy duty or large strain 
measurement. 

The limitation of the fiber optic sensors in terms of strain sensing 
is mainly due to the platform of the devices, not the sensing concept. 
Changing the sensing platform to some other waveguiding media 
that is more robust than the optical fiber might benefit the 
development of large strain sensor. Coaxial cable is a good 
candidate. Coaxial cable and optical fiber are two basic forms of 
cylindrical waveguiding structures that have been widely used in 
telecommunications for transmitting signals over a long distance [3, 
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4]. These two types of cables share the same fundamental physics 
governed by the same electromagnetic (EM) theory, except that the 
frequencies of the EM waves they support are quite different. In 
comparison with optical fibers, coaxial cables can survive a large 
longitudinal strain and are relatively resistant to lateral force and 
bending. If the concept of FBG can be implemented onto the coaxial 
cable, the resulting coaxial cable Bragg grating (CCBG) might 
provide a solution for some challenging issues (e.g. fragility) faced 
by FBG sensors. The new CCBG platform will have the same 
attractive attributes as fiber Bragg grating (FBG) and additional 
unique advantages such as large strain capability, robust enough to 
survive harsh conditions, and cost effective for the interrogated 
instrumentation. 

Recently, we have successfully reported and proven the feasibility 
of the CCBG device [5]. In this paper, we report the modeling and 
sensing mechanism of the CCBG as well as the detailed 
experimental results for axial strain measurement. 
 

Principle  

 

As shown in Fig. 1, the proposed CCBG is made by inducing 
air-holes at periodic distances along the coaxial cable. The air-hole 
perturbs the electromagnetic (EM) waves propagating in the 
otherwise continuous coaxial transmission line, resulting in a 
localized characteristic impedance change (air/dielectric 
discontinuity point) and thus a partial reflection from the impedance 
discontinuity. Assuming that all the discontinuities are identical,  
 

 
Fig. 1. Schematic Illustration of the Proposed CCBG Device. 
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Fig. 2. Segmentation Approach for Transfer Matrix Approximation. 
 

each hole generates a partial reflection with a reflection coefficient 
Г along the cable, as shown in Fig. 1. Further assuming that the 
initial phase at the first hole is zero and the cable is lossless, as the 
voltage wave travels along the coaxial cable, the accumulated 
reflection (S11) can be derived by the following equation [6], 
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where V0 is the input voltage wave, N is the total number of holes on 
the cable, Vr[n] is the reflected voltage wave at the nth hole, β is the 
propagation constant of the EM wave travelling inside the coaxial 
cable, Λ is the period of grating, and 2βnΛ is the phase difference of 
a wave traveling a round-trip between the first and the nth hole. β 
can be calculated by β = 2πf(LC)-1 or β = 2πfn/c, where f is the 
frequency of the EM wave, L and C are the distributed (per unit 
length) inductance and capacitance of the cable, respectively, n is 
the refractive index of the inner dielectric material, and c is the 
speed of light in vacuum. 

Assuming a small reflection coefficient of each hole, waves that 
are reflected more than once carry very little energy so that multiple 
reflections can be neglected. As a result, the reflection at the nth 
hole, Vr[n], can be calculated as 

    n2
0r 1VnV                                      (2) 

where (1+Г) is the transmission coefficient of the hole. Therefore, 
the accumulated reflection given in Eq. (2) can be simplified as 
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Eq. (3) indicates that the accumulation of the individual 
reflections eventually results in strong reflections at discrete 
frequencies where the superposition is in-phase. 
 

Modeling 

 
We propose a two port transfer-matrix method (T-matrix) for 
numerically simulating the reflection and transmission spectra of the 
proposed CCBG. Fig. 2 shows a segmentation approach for 
T-matrix method approximation. The entire cable is divided into 
multiple discontinuity segments and transmission-line segments, 
where an and bn (n = 1, 2, 3…) are the voltage input and output 
parameters in each segment, respectively. Each discontinuity 
segment is investigated using a full-wave numerical solver (Ansoft 
HFSS) to compute its network parameters, such as S-parameters. 

The 2×2 S-matrix of the discontinuity segment and transmission line 
segment can be written as: 
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where [SDS] is the S-matrix of the discontinuity segment, Г and T are 
the reflection and transmission coefficients of each dielectric/air 
discontinuity respectively, [STS] is the S-matrix of the transmission 
line segment, Λ is the length of each transmission line segment 
equaling the period of the grating, α is the transmission loss of the 
cable, β is the propagation constant, and Г and T can be numerically 
simulated by a commercial full-wave solver including magnitude and 
phase. To make the matrix transfer in a two-port system, the S-matrix 
must be converted to a T-matrix, which can be mathematically 
calculated as 
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where [TDS] and [TTS] are the T-matrices of the discontinuity 
segment and transmission line segment, respectively. From (3), [a2, 
b2] is the input of [TDS], but is also the output of [TTS] ([b3, a3]). As 
shown in Fig. 2, the right part of the discontinuity segment a2 and b2 
are equivalent to the left part of the transmission line segment b3 
and a3, respectively. As a result, the T-matrix has the transferring 
capability along the CCBG to model the device, and the final 
T-matrix can be written as: 
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where N is number of segments, or the number of discontinuities of 
the CCBG. After calculation of the final T-matrix of the CCBG, the 
last step is to convert the final T-matrix to S-matrix to find the 
input/output relation. 

In the numerical simulation process, N = 25, n = 1.5 for the 
dielectric of polyethylene, α = 0.04, and Λ = 75 mm. Fig. 3 plots the 
calculated reflection and transmission spectra of CCBG. Within the 
observation bandwidth of 0.1 GHz to 6 GHz, discrete resonances 
can be found at the fundamental frequency of 1.339 GHz and its 
harmonics in both reflection and transmission spectra. In this 
simulated spectrum, the strength of the resonant peaks or dips 
increased as frequency increased. This can be qualitatively  
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Fig. 3. Calculated Reflection and Transmission Spectra of CCBG by 
T-matrix Method. 
 
explained by the increasing reflection coefficient (Г) as a function 
of frequency numerically simulated by Ansoft HFSS. We also found 
the quality-factor (Q-factor) of the resonant peaks or dips increased 
as N increased, which matched well with the FBG theory. 

The resonance phenomenon can also be understood by the Bragg 
grating theory, similar to the well-studied case of FBG, where the 
forward propagating mode is coupled with the backward 
propagating mode in the waveguide at discrete frequencies 
satisfying the following Bragg condition [7], 

LC2
m

n2
mcf m

res


                                  (7) 

where L and C represent the inductance and capacitance of the cable, 
respectively. The resonant frequency is represented as fres, and m is 
an integer representing the diffraction order of the grating. Using (5) 
to quickly calculate the parameters in Fig. 3, the resonant 
frequencies in the simulated spectra match well with the calculation 
results. 
 

Sensing Mechanism 

 
The applied axial strain in CCBG will induce changes in length (ΔL), 
inner dielectric radius (Δa) and square root of relative permittivity 
of the dielectric material (Δɛ r

1/2), which can be expressed as [8], 
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where Ls is the sensing length of CCBG, ɛ  is the applied strain, a is 
the inner dielectric radius, v is the Poisson ratio of the dielectric, 
ɛ r

1/2 is the square root of relative permittivity of the dielectric, p11 
and p12 are the Pockel’s coefficients indicating that the relative 
permittivity of the inner dielectric will be changed (decreased) as 
stretching the cable, and Peff is the effective coefficient. Considering 
the EM wave propagating in the inner insulating material, the 

changes of dielectrics induced by the axial stress are the only 
parameters taken into account. Comparing (7) and (8), the changes 
in L and ɛ r

1/2 are the dominant elements inducing the change in 
spectra. The change in radius is not taken into account because there 
only exists a single TEM mode supported by the coaxial cable as the 
frequency of several GHz ranges. 

When an axial strain is applied to the CCBG, a resonant 
frequency shift will be introduced because of the change of the 
cable dimension and dielectric constant of the inner dielectric 
material. The strain induced resonant frequency shift can be 
expressed as follow, 
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where Δf is the frequency shift of the interrogated resonant 
frequency induced by the axial strain, and Lt is the total length of the 
cable under test. It is obvious that the resonant frequency decreases 
linearly to the applied strain. The reference values of p11, p12, and ν 
of the polyethylene are 0.337, 0.327, and 0.27, respectively. After a 
quick calculation, Peff was 0.2216 in this case. The stretch of the 
cable will increase the length of the cable, but decrease the 
refractive index of the dielectric. Typically, the length under test will 
be equal to the length of CCBG, indicating that the strain-frequency 
slope can be simply written as, 
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where the unit of the slope is Hz/µɛ . Assuming the interrogated 
resonant frequency is around 3 GHz, the resulted strain-frequency 
slope will be -2.34 kHz/µɛ , which matched well with our 
preliminary result of -3 kHz/µɛ  in [5]. 
 

Fabrication Method 

 
The above investigations into the device physics reveal that the 
resonance behavior results mainly from the superposition of 
periodic reflections along the cable axis. The reflections are 
generated by impedance or refractive index discontinuities as a 
result of interruption in material properties such as the permittivity 
and permeability, or in cable parameters such as the resistance, 
capacitance, or inductance. As such, there are many potential 
methods to create the impedance discontinuities in a coaxial cable. 
Here we present a hole-drilling method to create periodic 
discontinuities along the cable axis.  

Hole-drilling on a coaxial cable may degrade the mechanical 
strength of the cable.  On the other hand, the hole-based CCBG 
sensor might create the opportunity for filling the holes with other 
types of materials for the purpose of temperature compensation.  In 
addition, the device might be useful for measurement of other 
parameters such as corrosion and chemical concentration by 
refilling the holes with various functional materials.  Therefore, it 
deserves a detailed investigation.  

Fig. 4 shows the proposed CCBG fabrication system. In order to 
precisely control the drilling shape, depth, grating period, a 
computer numerical controlled (CNC) drilling operator (Sherline  

 

1 2 3 4 5 6
-50

-40

-30

-20

-10

0

Tr
an

sm
is

si
on

 (d
B

)

Frequency (GHz)

-120

-90

-60

-30

0

 

R
ef

le
ct

io
n 

(d
B

)



Huang et al. 

Vol.5 No.5 Sep. 2012                                              International Journal of Pavement Research and Technology  341 

 
Fig. 4. Proposed CCBG Fabrication System. 
 

 
Fig. 5. Reflection and Transmission Spectra of the Fabricated 
CCBG. 
 

 
Fig. 6. Resonant Frequency as a Function of Strain: Dynamic Range 
Test of CCBGs. 
 
P/N 8020A Model 2000) was used, where the minima feeding step 
of the 3 axes is 100 µm. A vector network analyzer (VNA HP 
8753ES) was used to in situ monitor the reflection spectrum during 
fabrication process. One end of the coaxial cable (50 Ω, Jamco 
Electronics, RG-58) was launched to the VNA and the other end 
was matched with a 50 Ω resistance. A 1/12-inch drilling bit was 

chosen in this case. All the machines including the VNA were 
controlled by a computer. The grating period was 25 mm and the 
number of discontinuities was 41 (in order to make the length of 
CCBG equaling to 1 m for the convenience of test). The drilling 
depth was 2.1 mm with the outer diameter of 5 mm of the cable. The 
coaxial cable was properly calibrated by VNA before fabrication at 
each time. 

Fig. 5 plots the reflection and transmission spectra of a fabricated 
CCBG. Within the frequency range of 100 kHz to 6 GHz, only one 
resonant frequency of 3.92 GHz (fundamental frequency) could be 
found in both reflection and transmission spectra due to the shorter 
grating period of 25 mm than that of the simulated parameter in Fig. 
3. The harmonics are beyond the observation limit of VNA. The 
resonances shown in the transmission spectrum matched exactly 
with the reflection spectrum and the experimental results matched 
well with the simulated results in terms of resonant frequency, 
strength, and Q-factor. The experimentally measured resonant 
frequencies also matched well with those calculated by the Bragg 
condition. The transmission spectrum shows a relatively low 
transmission loss (≤ 1 dB), indicating that the hole-drilling method 
did not incur in any extra loss to the cable. 
 

Experimental Results 

 
For the axially tensile strain test, the CCBG of 1 m in length was 
mounted on a load frame (MTS 880 by TestResources Inc.) using 
two home machined aluminum clamper and the signals were 
interrogated by a VNA. The reflection and transmission spectra of 
the CCBG with and without the clamping fixtures had no evident 
difference, indicating that the clampers did not introduce noticeable 
impedance mismatch and reflections. At each increasing step, the 
transmission and reflection spectra of the device were recorded to 
find the resonant frequencies. The VNA was configured to acquire 
the fundamental resonant peak in the reflection spectrum with an 
observation bandwidth from 3.5 to 4.5 GHz, a total of 1601 
sampling points and intermediate frequency bandwidth (IFBW) of 
10 kHz. 

For the dynamic range test of CCBGs, the load frame elongated 
the CCBG at a step of 3 mm, corresponding to a strain increasing 
step of 3000 µɛ , given the initial distance between the two 
clampers was 1 m. More than 15 loading steps were applied to the 
CCBG using the load frame until the cable broke. Several CCBGs 
with the same fabrication parameters were tested. The average 
breaking point (inner conductor broke first) was around 5%, 
indicating the dynamic range of CCBG is dramatically greater than 
0.4% of the FBG. For each strain point, the reflection and 
transmission spectra were measured multiple times consecutively, 
and the averaged spectra were used to find the center frequency of 
the resonant peaks or dips. Fourth-order polynomial curve-fitting 
was used to smooth the resonant peak for further improvement of 
the measurement accuracy. 

Fig. 6 plots the change in resonant frequency as a function of the 
applied tensile strain. In general, the resonant frequency of CCBG 
decreased almost linearly with a slope of -2.1 kHz/µɛ , which 
matched well with the calculated slope in (8). The linear 
strain-frequency shift relation indicates that the CCBG can be used 
as a sensor for strain measurement after it is properly calibrated. The  
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Fig. 7. Resonant Frequency as a Function of Strain: Dynamic Range 
Test of CCBGs. 
 
dynamic range of 5% indicates the proposed CCBG may provide a 
solution to the problem issued by FBG in SHM. Interestingly, the 
Q-factor decreased as the load frame increased. This can be 
qualitatively explained that the changes in dimension of the cable as 
the strain increased induced an impedance mismatch to enlarge 
extra loss for the cable, but the decreasing of Q-factor did not 
influence the linearity and sensitivity of CCBG. An increasing step 
of 300 µɛ  was also shown in the inset of Fig. 6. The 
strain-frequency response was also linear enough. 

For the detection limit test of the proposed CCBG, the load frame 
elongated the CCBG at a step of 0.1 mm, corresponding to a strain 
increasing step of 100 µɛ . A prestressing load was applied to 
eliminate the measurement error, and 20 loading steps were applied 
to the CCBG. The observation bandwidth of VNA was set to 100 
MHz around resonant frequency to further enhance the 
measurement accuracy. The spectra overlapping problem was still 
severely influencing the signal processing result. And in practical 
measurements, especially in small increasing step, noise from 
random reflections along the cable as well as the thermal noise 
present in the interrogation instruments are unavoidable. To detect 
the small resonant-frequency shift and achieve high resolution in 
large strain measurement, a cross-correlation post-processing 
method was used. The cross-correlation between the two spectra 
(before and after applying strain) results in a peak whose location 
provides a direct measure of the resonant-frequency shift. Every 
point in the spectra will contribute to further enhance the 
measurement accuracy. Fig. 7 plots the change in resonant 
frequency as a function of axial strain. With this post-processing 
method, the strain-frequency response was still linear enough, 
indicating a high resolution of the proposed CCBG. 
 

Conclusion 

 
To summarize, this paper reports a CCBG as a large strain sensor. 
The CCBG was fabricated by automatically drilling holes into the 
coaxial cable at periodic distances along the cable axis. The open 
hole resulted in an impedance or refractive index discontinuity and 
partial reflection of the EM wave propagating inside the cable. The 

periodic discontinuities produced resonant peaks and dips in 
reflection and transmission spectra, respectively. These resonances 
occurred at discrete spectral positions with a fundamental frequency 
and high order harmonics. No noticeable loss to the EM waves was 
observed at frequencies other than the resonances. To better 
understand the physics, the S-parameters of the open hole were 
calculated using finite element analysis and the device was modeled 
based on a T-matrix method. The theoretic simulation and 
experimental result matched well. The experimentally measured 
resonant frequencies also matched well with those calculated by the 
Bragg equation. The sensing mechanism has been fully investigated 
and matched well with the experimental results. When subject to a 
strain, the resonant frequency of the CCBG device showed a linear 
response to the loaded strain, indicating the CCBG’s potential 
capability of being used as a strain sensor with a large dynamic 
range of around 5%. The resolution of CCBG as a strain sensor was 
100 µɛ , which also showed a linear response subject to that minima 
strain after using a cross-correlation post-processing method. The 
advantages of FBG as a strain sensor were well inherited by the 
proposed CCBG, and some unique advantages have been explored, 
indicating CCBG as a strain sensing concept could potentially be 
effectively applied in SHM. 
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