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Kenlayer Based Pavement Backcalculation Moduli Using
Artificial Neural Networks

Abolfazl Hassani“, Ardeshir Bahreininej adz, and Maziar Moaveni’

Abstract: In the mechanistic flexible pavement design procedure, the resilient moduli of the individual pavement layers must be known
prior to the computation of critical pavement responses. The use of Falling Weight Deflectometer (FWD) data to backcalculate pavement
layer moduli is a cost-effective and widely used method. Most of the commercial backcalculation programs do not account for the
nonlinearity of unbound granular materials and fine-grained cohesive soils and therefore often do not produce realistic results. Kenlayer
is structural pavement analysis software which incorporates with nonlinearity, stress dependent resilient modulus material models, and
failure criteria for the materials of the pavement’s layers. Multilayer perceptron networks which use an error-backpropagation learning
algorithm were trained to approximate the FWD backcalculation function. The genetic algorithm was used to identify the best topology
for the networks. The study showed that by using neural networks with proper topologies the coefficient of determination (R?), in
estimating Ky, and E,; was increased to 0.85 and 0.97. Therefore neural networks can be used as a fast and accurate tool for

backcalculating pavement layer moduli.
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Introduction

A conventional asphalt concrete pavement is typically made up of
three layers which are surface layer paved with asphalt concrete mix,
base or/and subbase layer made up of crushed stone, and subgrade
layer made up of natural soil. The deflection of the pavement
represents an overall “system response” of the pavement layers to
an applied load. When a load is applied on a flexible pavement, the
pavement layers are deflected nearly vertically to form the basin
called deflection basin. The deflected shape of the basin is a
function predominantly by the thickness of the pavement layers, the
moduli of the individual layers, and the magnitude of the load. The
Falling Weight Deflectometer (FWD) test is one of the most widely
used tests for assessing the structural integrity of roads in a
non-destructive manner [1]. In a FWD test, an impulse load is
applied to the pavement surface by dropping a weight onto a
circular metal plate and the resultant pavement surface deflections
are measured directly beneath the plate and at several radial offsets.
The FWD test aims to simulate the force history and deflection
magnitudes of a moving truck tire.

Backcalculation generally refers to an iterative procedure
whereby the layer properties of the pavement model are adjusted
until the computed deflections under a given load agree with the
corresponding measured values [2].

It is well known that granular materials and subgrade soils are
nonlinear with an elastic modulus varying with the level of stresses
[3]. The elastic modulus used for the layered systems is the resilient
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modulus obtained from repeated unconfined or triaxial compression
tests.

Unbound granular materials used in the base/subbase layer of a
flexible pavement show “stress-hardening” behavior (increase in
resilient modulus with increasing hydrostatic stress), and cohesive
subgrade soils show “stress-softening” behavior (reduction in
resilient modulus with increasing deviator stress) [3].

Therefore, the layer modulus is no longer a constant value, but a
function of the stress state. The pavement layer moduli values
predicted using the backcalculation programs which assume the
linear elastic behavior for the materials of pavement are not very
accurate.

The Kenlayer computer program can be only applied to flexible
pavements with no joints or rigid layers [4]. The backbone of
Kenlayer is the solution for an elastic multilayer system under a
circular loaded area. The solutions are superimposed for multiple
wheels, applied iteratively for nonlinear layers, and collocated at
various times for viscoelastic layers. As a result, Kenlayer can be
applied to layered systems under single, dual, dual-tandem, or dual-
tridem wheels with each layer behaving differently, either linear
elastic, nonlinear elastic, or viscoelastic [4].

The goal of this research was to develop a tool for back-
calculating nonlinear pavement layer moduli from FWD data using
Artificial Neural Networks (ANNs). The reason for using ANNs to
accomplish this task was that they could learn a backcalculation
function that was based on much more realistic models of pavement
response (e.g. Kenlayer) than those used in traditional basin
matching programs. ANNs have been successfully used in the past
for the backcalculation of flexible pavement moduli from FWD data
[5].

Kenlayer was used in this study to develop the synthetic data
patterns which accounts for nonlinearity in unbound material
behaviour. Multilayer feedforward perceptron networks which use
an error-backpropagation learning algorithm, were trained to
approximate the FWD backcalculation function.
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Neural Network Data Patterns Preparation

Three types of data patterns were generated using Kenlayer to train,
cross validate, and test the neural network. A conventional flexible
pavement section was modeled as a three-layered (asphalt layer,
base layer, and subgrade layer), axisymmetric structure. In running
Kenlayer, the granular base was divided into seven layers with the
stress points shown in Fig. 1.

For analyzing deflection basins, average layer moduli based on
RCNOL! = 7.6cm and SLD? = 0.25 is recommended. The stress
point for the subgrade was assumed at depth of 60cm [4].

By using different asphalt moduli, and K for base and subgrade
and also changing the thickness of asphalt and base, the deflections
of pavement under FWD loading at radial distances from loading
plate can be calculated. Comparison of deflection basins by different
models are shown in Fig. 2. This figure shows that by choosing
proper asphalt moduli and K for base and subgrade and also by
choosing proper stress points, Kenlayer can simulate the deflection
basin of the field and match with the field measurements accurate
enough [4].

After values of K for both the granular base and subgrade are
backcalculated from deflection measurements, they can be used to
determine the maximum tensile strain at bottom of asphalt layer and
maximum compressive strain on top of subgrade layer by selecting
the stress points directly under the load. This is the major advantage
of nonlinear analysis over the linear analysis. In the linear analysis,
the backcalculated moduli are used directly for design, regardless of
the fact that the layer moduli is not uniform and varies with the
magnitude of the load and the distance from the load. In the
nonlinear analysis, values of K based on the matching of deflection
basin, are backcalculated and later used to determine the moduli
based on the magnitude of load and the location at which responses
are to be evaluated [4].

A typical FWD test is performed by dropping a 4,100kg load on
top of a circular plate with a diameter of 30.4cm resting on the
surface of pavement. Deflections are measured at offsets of 0, 30, 60,
90, 120, 150, and 180cm from the load center of loading plate.

Since the time of loading in FWD test is so short, asphalt layer
was modeled as linear elastic material. For granular base, a
relationship between resilient modulus and the first stress invariant
can be expressed as following [3]:

E = Ky, 052 M

where E is the resilient modulus (MPa), @ is the first invariant
stress, which can be either the sum of three normal stresses or the
sum of three principal stresses. Kp,, and K, are obtained from
laboratory repeated load triaxial test.

Although this model has been questioned by a number of
researchers [6], it is the most widely used model [7].

Based on extensive testing on granular materials, the following
relationship between K}, and K, has been proposed [8]:

! Radial Coordinate on pavement surface for computing elastic
modulus of Nonlinear Layer
2 Slope of Load Distribution
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Fig. 2. Comparison of Deflection Basins in Different Models [4].
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Accordingly, good quality granular materials, such as crushed
stone, show higher Kj,,, and lower K, values, whereas the opposite
applies for lower quality aggregates.

The resilient modulus of fine-grained soils decreases with
increase in deviator stress. The bilinear behavior can be expressed
as following [9]:

E:Kxub +K3(Kx _o-d)
E=Kop—~Ky(04-K;)

where ;<K

where 2K,

3

in which K,;, K, K3, and K, are material constants and ¢, is the
deviator stress.

The value of resilient modulus at the breakpoint in the bilinear
curve is a good indicator of resilient behavior, while other constants
such as K, K3, and K, display less variability and influence
pavement response to a smaller degree than Kj,; [4]. Fine-graine
soils has been categorized into four types, which are very soft, soft,
medium, and stiff, with the resilient modulus-deviator stress curve
shown in Fig. 3.

In this research, the 7 deflections which were computed at radial
offset values, the thickness of asphalt surface layer, and the
thickness of base layer together form the 9 input parameters for the
neural network. The natural subgrade was assumed to be of infinite
thickness and the thickness was not considered. The modulus of the
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Fig.3. Resilient Modulus-Deviator Stress Relationship for Four
Types of Subgrades [10]. (Note K; = K, and K, = K in this figure)

asphalt layer (E,), the modulus of the base layer (Kp,s), and the
modulus of subgrade layer K,;, represent the 3 output parameters.

A total of 7,200 data patterns were generated by varying
pavement layer thicknesses and moduli values. 5,200 data patterns
were used to train the ANN, 1,300 data patterns were used to cross
validate, and 700 data patterns were used to test the trained network.

The K,; parameter and also the upper and lower limits for the
modulus of the subgrade should be introduced to Kenlayer as inputs.
The following equations can be extracted from Fig. 3 for determining
the upper and lower limits for the subgrade’s modulus:

E, . sublKPa]=32167.8+K,[KPa]
E_, sub|KPa] =11040+2.76K_,[KPa]

)

The pavement geometry and material property/model inputs for
Kenlayer solutions are shown in Table 1.

Artificial Neural Networks

A neural network is an adaptable system that can learn relationships
through repeated presentation of data, and is capable of generalizing
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Fig. 4. Feedforward Artificial Neural Network.

to new, previously unseen data. Some networks are supervised, in
that a human must determine what the network should learn from
the data. Other networks are unsupervised, in that the way they
organize information is hard-coded into their architecture [11].

In feedforward architecture networks information flows from the
input layer to the hidden layer and then to the output layer. A typical
example of such networks is shown in Fig. 4. Signals only go
forward through the network with no loop backs [12].

Artificial Neural Network Training and Topology
Optimization

A multilayer perceptron artificial neural network was trained in this
study with the results which were obtained by Kenlayer and was
used as rapid analysis design tool for backcalculation in flexible
pavements. To train the network the backpropagation learning
algorithm was used. Backpropagation learning algorithm is often
used in conjunction with feedforward networks and it provides a
way of using examples of a target function to find the weights that
make the mapping function approximate the target function as
closely as possible [13]. The method usually used to calculate the
weight changes is the gradient descent. A series of iterations is done
in which the calculated output is compared with the known values,
adjusting the weights in such a way that the difference between the
calculated values and the target function is minimized. For each of
iteration, there is thus a forward pass followed by a backward pass
during which error information is propagated backward from the
output neurons to the hidden neurons [14]

Four networks, with 1, 2, 3, and 4 hidden layers with initial
number of neurons in each hidden layer were constructed and
optimized using Genetic Algorithms (GAs). GAs are general
purpose search algorithms based upon the principles of evolution
observed in nature. GAs combine selection, crossover, and mutation
operators with the goal of finding the best solution to a problem
[15].

Table 1. Pavement Geometry and Material Property/Model Inputs for Kenlayer Solutions.

Material type Layer thickness Material model Layer modulus inputs
Asphalt concrete 50 to 250mm Linear elastic E, = 800 to 11,200MPa
Granular base 120 to 400mm Nonlinear elastic Kyase= 20 to 80MPa
K,=10.32100.66
K5 = 10 to 85MPa
Fine grained subgrade Infinite Nonlinear elastic Epm =42 to 117MPa

Enin =10 to 45MPa
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Fig. 5. Training Curve for the 9-24-15-3 Network.

Two hidden layer network topology was found to be sufficient in
solving a problem in this size. The best topology which had the
most linear correlation coefficient and the least mean squared error
was found to be 9-24-15-3. It means that the network had 9 inputs,
which were 7 deflections, the thickness of asphalt layer, and the
thickness of base layer, two hidden layers with 24 and 15 neurons,
and 3 outputs which were E,;, Kpae, and Kj,;. The transfer function
in the hidden layers was hyperbolic tangent and in the output layer
was linear sigmoid.

Using the Kenlayer synthetic data patterns, the ANN with the best
topology was trained to learn the relationship between the synthetic
deflection basins and thicknesses (inputs), and the pavement layer
moduli (outputs). To monitor the performance of the network a
mean squared error at the end of each epoch was calculated. An
epoch is defined as one full presentation of all the training sets to
the network. Cross validation which is a highly recommended
method for stopping training has been used in this study [11]. This
method monitors the error on an independent set of data and stops
training when this error begins to increase. This is considered to be
the point of best generalization [11].

The training curve and mean squared error values are presented in
Fig. 5 and Table 2. Table 2 shows that at epoch number 36,209 the
cross validation error was at its minimum and at epoch number

Discussions

The performance of the network to generalize to test data patterns
can be evaluated with three parameters which are R, MSE, and
NMSE. These parameters are calculated using the following
formulas [11]:

N
(D, - %)

—i=0 ®)]
MSE N

N2 x MSE (6)
NY D - D)’
__ XD, -D)¥,-Y)
[S(D,- D)2 3(¥,- 1) 1%

NMSE =

M

in which:
N = number of exemplars in the test data patterns,
D;= desired output for exemplar i,
Y; =network output for exemplar i,
D =mean of the desired outputs,
Y = mean of the network outputs,
MSE = Mean squared error,
NMSE = Normalized mean squared error,
R = Linear correlation coefficient.

The performance of the 9-24-15-3 network to predict the test data
patterns is shown in Table 3.

Figs. 6, 7, and 8 show the performance of the 9-24-15-3 network
and display the target and ANN predicted moduli of the asphalt,
subgrade, and base layers, respectively for the 700 test data patterns.
The coefficient of determination values (R*) are reported in the
scatter plots.

Table 3 and Fig. 8 show that the base layer modulus was the hardest
to predict. The difficulty associated with backcalculating the base
layer modulus is a well recognized problem [16]. In order to
improve the efficiency of neural network prediction capability,
another network with the 11-25-6-1 topology was designed and
trained with the same data patterns as the 9-24-15-3 network. In this

Table 2. MSE Values for Training and Cross Validation Data Patterns
for the 9-24-15-3 Network.

39,844 the training error was at its minimum. It means that although E?Z;gletzw;éts TrT; e Cross thdatlon
the network was trained for 39,844 epochs but from epoch number Run # 1 1
36,209 to 39,844 the cross validation error did not further decrease. Epoch # 39,844 36,209
Therefore the best weights which lead to the best network Minimum MSE 0.004863308 0.006557632
generalization were obtained and saved at epoch number 36,209. Final MSE 0.004863308 0.006908725
Table 3. The performance of the 9-24-15-3 Network.
Performance E, Koo K,
MSE 382,768.6559 665.3193099 2.655104275
NMSE 0.032939043 1.538228705 0.004111663
MAE(Mean Absolute Error) 342.0066288 8.329449027 0.824031822
Minimum Abs Error 1.855738014 0.011700513 0.000258325
Maximum Abs Error 8,077.777778 48.33333333 18.55078201
R 0.985435108 0.856186944 0.998683159
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Fig. 8. ANN Prediction of Base Modulus.

case the network had 11 inputs which were 7 deflections, 2
thicknesses, in addition to E,;, and Kj,; and a single output which
was Kpue- In order to determine the effect of each input parameter
on Kj,,, a sensitivity analysis was carried out.

Sensitivity analysis provides a measure of the relative importance
among the inputs of the neural model and illustrates how the model
output varies in response to variation of an input. The first input is
varied between its mean +/- a user-defined number of standard
deviations while all other inputs are fixed at their respective means.
The network output is computed for a user-defined number of steps
above and below the mean.
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Table 4. The Sensitivity Analysis on 11-25-6-1 Network.

Sensitivity (input) Kpase (output)
DO 144.7358875
D30 7.00376E-13
D60 376.888813
D90 517.9569747
D120 1.72131E-12
D150 725.2300913
D180 946.8826221
Has 4.209277386
Hbase 1.5533446
Eas 2.51504E-17
Ksub 3.33268E-15
Table S. The Performance of the 11-25-6-1 Network in Predicting
Kbage:
Performance Kypase
MSE 7031117574
NMSE 0.162560544
MAE 5.748000136
Min Abs Error 0.005092645
Max Abs Error 60.28405087
R 0.918971432

The results are shown in Table 4 which summarizes the variation
of each output with respect to the variation in each input. Table 4
reports the standard deviation of each output divided by the standard
deviation of the input which was varied to create the output. Table 4
shows that E,; and K,; have some minor effects on Kj,,. It means
that by adding these two parameters to the previous 9 input
parameters and designing a network which has 11 inputs and a
single output which is Kj,, the chance of predicting the Kj,, more
accurately may increase. The performance of the 11-25-6-1 network
to predict the test data patterns is shown in Table 5.

Table 5 shows that the linear correlation coefficient is increased
to 0.91 with 11-25-6-1 network.

Conclusions

ANN-based pavement backcalculation tools for analyzing the FWD
data collected from Kenlayer program output have been developed
in this study. Unlike the linear elastic assumptions commonly used
in pavement layer backcalculation, realistic nonlinear unbound
aggregate base and subgrade soils modulus models were used in the
Kenlayer program. Kenlayer has not been used before in foreward-
calculating and producing database for backcalculating. It concludes
that Kenlayer can estimate the field deflection basin better than
other softwares. The Genetic algorithms have been used to identify
the best topology for the neural networks which are trained and
tested to estimate the pavement layer moduli. Although the net-
works have less neurons than previous networks which have been
used before for backcalculating, the coefficient of determination (R
in estimating the Kj,, and E,; is increased to 0.85 and 0.97. It is the
first time that K., and E, are used as inputs for estimating Kjpg,.
The sensitivity analysis shows that using these two parameters as
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inputs can increase the performance of the network.

This study showed that multilayer perceptron artificial neural
networks can be used to predict the moduli of the pavement layers
fast and with good accuracy even if the forward calculation is based
upon nonlinear assumptions.
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