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─────────────────────────────────────────────────────── 
Abstract: A combined laboratory and modeling study was undertaken to develop a database for cementitiously stabilized subgrade soils 
in Oklahoma and to develop artificial neural network (ANN) models that could be used to estimate resilient modulus (Mr) from 
commonly used subgrade soil properties in Oklahoma. An Mr database was developed using laboratory test results on 160 specimens 
prepared by using four soils stabilized with three cementitious additives, namely, lime (3%, 6% and 9%), class C fly ash (CFA) (5%, 10% 
and 15%) and cement kiln dust (CKD) (5%, 10% and 15%). One Multi-Layer Perceptrons Network (MLPN) and one Radial Basis 
Function Network (RBFN) types of ANN models were developed using a development dataset and validated using a different dataset. 
Overall, MLPN neural network was found to show best acceptable performance for the present evaluation and validation datasets. 
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Empirical design methods for flexible pavement structures are 
primarily based on the equations that were developed largely from 
the AASHO Road Tests conducted in the1950’s. These methods fail 
to reflect the dynamic nature of traffic loads. Therefore, the 
mechanistic design methods referred to as the “AASHTO Guide for 
Design of Pavement Structure” [1] recommended the use of resilient 
modulus (Mr), a dynamic-strength parameter, to characterize 
flexible pavement materials. The Mr accounts for the cyclic nature 
of vehicular traffic loading, and is defined as the ratio of deviatoric 
stress to recoverable strain. 

Several laboratory and field procedures are currently either being 
used or evaluated for determining a design Mr value for subgrade 
soil. Direct laboratory methods used for evaluating Mr during the 
past two decades include resonant column, torsional shear, gyratory, 
and repeated load triaxial testing [1-4]. Among these, the Mr from 
repeated load triaxial test (RLTT) is used most frequently because of 
the repeatability of the test results and its representation of field 
stress in a controlled laboratory environment. RLTT is conducted in 
the laboratory on remolded or undisturbed samples according to 
different AASHTO test methods of which AASHTO T307 is used 
frequently [5]. The AASHTO T307 test method can be a time 
consuming and expensive test method, particularly for small 
projects. 

In the 2002 AASHTO design guide, a hierarchical approach is 
used to determine different design inputs including Mr [5]. It 
requires evaluation of pertinent engineering properties of subgrade 
soils in the laboratory or field to pursue a Level 1 (most accurate) 
design. However, for a Level 2 (intermediate) design the inputs are 
user selected, possibly from an agency database or from a limited 
testing program or could be estimated through correlations [5]. A 
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Level 3 design, which is the least accurate and generally not 
recommended, uses only the default values. For Level 2 designs, a 
regression model for Mr can be very useful as it provides the 
designer with significant flexibility in obtaining the design inputs 
for a project. 

Since conducting Mr test in the laboratory is tedious and time 
consuming, regression models are generally preferred to estimate 
the Mr value. Several studies have previously been undertaken to 
develop empirical correlations for estimating Mr values in terms of 
other soil properties [6-12]. However, only a few models and 
correlations are available for cementitiously stabilized soils in the 
literature; these correlations are either limited to one type of 
additive [13-15] or applicable only for a particular stress level [5, 
16-18]. One of the reasons for limited number of regression models 
for cementitiously stabilized soils is poor performance of regression 
relationship between Mr values and soil/additive properties at 
different stress levels. 

Consequently, the primary objective of the study presented herein 
is to develop artificial neural network (ANN) models for Mr from 
some common subgrade soils in Oklahoma, stabilized with locally 
available cementitious additives for Level 2 pavement design 
applications. The strengths and the weaknesses of the developed 
models were examined using additional Mr test results that were not 
used in the development of these models. The models developed in 
this study are expected to be useful in the Level 2 designs of 
pavements in Oklahoma. 
 
Review of Previous Studies 

 
ANN has become an important modeling technique due to its 
success in many engineering applications including geotechnical 
engineering problems [see e.g., 19-21]. One of the common 
artificial neural networks currently in use is the feed-forward 
network.  As evident from its name, a feed-forward network only 
allows the data flow in the forward direction [23-26]. Based on the 
architecture, a number of feed-forward networks are available such 
as multi-layer perceptron, radial basis function, probabilistic neural 
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networks, generalized regression neural networks, and linear 
networks [19, 21, 27-29]. 

ANN contains a number of simple, highly interconnected 
processing elements, known as “nodes” or “units.” In a typical 
processing element, each input connection has a weighting value. 
With the weighting value, input data and bias value, a net input is 
described into the processing element. Then, a transfer function 
provides an output from the net input. Finally, a single output is 
produced and transmitted to other processing elements [20, 30-31].  

The weights between the processing elements are adjusted during 
the “training or learning” phase. In the training process, a number of 
epochs are performed in the network.  After each epoch, the 
weights are adjusted and a sum of mean squared error between 
target and output values is calculated. The training process stops 
when the sum of mean squared error is minimized or falls within an 
acceptable range [21, 31]. 

Different algorithms can be used to train a network. In general, 
the training algorithms can be divided into two types: supervised 
and unsupervised.  The supervised algorithms adjust the weights 
and the thresholds using the input and target output values, while the 
unsupervised algorithms use only the input values. The supervised 
training algorithms include back propagation, conjugate gradient 
descent, Levenberg-Marquardt, Pseudo-inverse, etc. [21, 27, 31]. 

A number of researchers have utilized ANN technique in 
pavement applications. For example, Meier et al. [32] augmented a 
computer program, WESDEF, with ANN models to back-calculate 
pavement layer moduli. The ANN models were trained to compute 
the layer Mr from falling weight deflectometer (FWD) data from 
flexible pavements [32]. 

In another pavement application study, Sharma and Das [28] used 
ANN models to back-calculate layer moduli with better accuracy 
compared with other software, namely, EVERCALC and ExPaS. In 
a recent study, Far et al. [28] utilized ANN for estimating the 
dynamic modulus of asphalt concrete. The results showed that the 
predicted and measured dynamic modulus values are in close 
agreement using ANN models. 

Ceylan et al. [33] used ANN models for predicting dynamic 
modulus of hot mix asphalt. The ANN-based models showed better 
overall prediction accuracy as compared regression models. The 
ANN models also produced better agreement between predicted and 
measured rutting and cracking of a pavement. 

Xiao et al. [34] used the ANN approach in estimating the stiffness 
behavior of rubberized asphalt concrete containing reclaimed 
asphalt pavement. In another study, Xiao et al. [35] developed an 
ANN model for predicting the viscosity of crumb rubber modified 
binders using four input variables: asphalt binder source, rubber size, 
mixing duration, and rubber content. 

In another study by Far et al. [36], ANN models for estimating 
dynamic moduli of LTPP sections were developed. A large national 
data set that covers a substantial range of potential input conditions 
was utilized to train and verify the ANNs. First, the ANN predictive 
models were trained and ranked using a common independent data 
set that was not used for calibrating any of the ANN models. A 
decision tree was developed from these rankings to prioritize the 
models for any available inputs. Next, the models were used to 
estimate the dynamic moduli for the LTPP database materials and 
ultimately to characterize the master curve and shift factor function. 

It was found that ANN models predict reliable dynamic moduli of 
LTPP sections over a wide range of temperatures and frequencies. 

In a recent study, Thube [37] developed ANN based pavement 
deterioration models for low volume pavements in India. A database 
containing distresses, subgrade characterization and traffic data 
were collected from 61 in-service pavement sections over a three 
year period was developed. A total of four unified ANN based 
models were suggested for predicting cracking, raveling, rut depth, 
and roughness progression of low volume pavements. 
 
Characteristics of Soils and Database 

 
In this study, a total of four clay subgrade soil series namely, Port 
series (P-soil), Vernon series (V-soil), Carnasaw series (C-soil) and 
Kingfisher series (K-soil) are used. Of these, three soils (P-, V- and 
C-soil) were used in the development/evaluation of models and are 
collectively referred to as the “development/evaluation dataset.” The 
remaining soil (K-soil) was used for the validation of the models. 
Data for stabilized K-soil is collectively referred to as the 
“validation dataset.” P-soil, V-soil, C-soil and K-soil are CL-ML, 
CL, CH and CL clays, respectively, in accordance with the Unified 
Soil Classification System (USCS). A total of three locally available 
additives, namely, hydrated lime, class C fly ash (CFA), and cement 
kiln dust (CKD) were used in this study. The physical and chemical 
properties of soils and additives are presented in Tables 1 and 2, 
respectively. 

An Mr database developed using laboratory test results on 160 
specimens was prepared by using four soils stabilized with three 
additives namely, lime (3%, 6% and 9%), CFA (5%, 10% and 15%) 
and CKD (5%, 10% and 15%). An outlier approach was used 
employing t-statistics to discard the test results if a sample result 
deviated significantly from the average of Mr results obtained from 
the four replicates. The critical value (t-critical) for student’s t-test is 
taken at a significance level (α) of 0.05. If the calculated t-statistic 
value is greater or equal to this value (t-critical), then there is a one 
in twenty chance that the value is from the same population. 
Additional details about statistical parameters such as standard 
deviation and coefficient of variation are provided elsewhere [38]. 
 
Artificial Neural Network Models 
 
Development and Evaluation of Models 

 
In the present study, two feed-forward-type ANN models, namely, 
Radial Basis Function Network (RBFN) and Multi -Layer 
Perceptrons Network (MLPN), were developed using the Mr dataset 
of P-, V- and C-soils. Previous studies show that RBFN and MLPN 
are the two best ANN models for predicting Mr values in subgrade 
soils [22]. A commercial software, STATISTICA 8, was used to 
develop these models. In the present application, the input layer 
consists of 25 nodes (or neurons), one node for each of the 
independent variables, namely, UCS/Pa (unconfined compressive 
strength/atmospheric pressure), MC (moisture content), DUW/w 
(dry unit weight/unit weight of water), P200 (passing No. 200 sieve), 
PI (plasticity index), CC (clay content), pHs (pH of soil), SSAs 
(specific surface area of soil), CECs (cationic exchange capacity of 
soil), PA (percentage of additive), SiO2 (silica content), Al2O3 
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Table 1. Testing Designation and Soil Properties. 
Method Parameter/Units P-soil K-soil V-soil C-soil 
ASTM D 2487 USCS Symbol CL-ML CL CL CH 
AASHTO M 145 AASHTO Designation A-4 A-6 A-6 A-7-6 
ASTM D 2487 USCS Name Silty Clay with Sand Lean Clay Lean Clay Fat Cay 
ASTM D 2487 % Finer than 0.075 mm 83 97 100 94 
ASTM C 430 % Finer than 0.045 mm 54 89 95 87 
ASTM D 422 % Finer than 0.002 mm (Clay Content) 11 45 39 48 
ASTM D 4318 Liquid Limit  27 39 37 58 
ASTM D 4318 Plastic Limit  21 18 26 29 
ASTM D 4318 Plasticity Index 5 21 11 29 
… Activity 0.24 0.47 0.28 0.69 
ASTM D 854 Specific Gravity 2.65 2.71 2.61 2.64 
ASTM D 698 Optimum Moisture Content (%) 13.1 16.5 23.0 20.3 
ASTM D 698 Max. Dry Unit Weight (kN/m3) 17.8 17.4 16.0 16.3 

USCS: Unified Soil Classification System 
 
Table 2. Chemical and Physical Properties of Soils used in this Study. 

Chemical Compound/Property 
Percentage by Weight, (%) 

P-soil K-soil V-soil C-soil 
Silica (SiO2)a 77.7 65.8 54.0 63.4 
Alumina (Al2O3)a 7.4 13.0 17.6 21.5 
Ferric Oxide (Fe2O3)a  2.3 4.8 7.2 9.1 
Silica/Sesquioxide Ratio (SSR) SiO2/(Al2O3+Fe2O3) 14.9 7.0 4.1 3.9 
Calcium Oxide (CaO)a 3.1 3.6 3.8 0.1 
Magnesium Oxide (MgO)a 1.9 3.5 5.0 1.2 
Sulfur Trioxide (SO3)a 0.0 0.1 1.8 0.0 
Alkali Content (Na2O + K2O)a 2.4 3.2 5.8 3.0 
Percentage Passing No. 325b 54.0 88.8 94.8 87.2 
pH (Pure Material)c 8.91 8.82 8.14 4.17 
Sulfate Content (ppm)d < 40 < 40 15,400 267 
Specific Surface Area (m2/gm)e 51.0 92.5 116.5 118.5 
Cation Exchange Capacity (meq/100 gm)f 11.5 21.7 19.9 5.2 
28-day UCS (kPa) 224 191 168 207 
aX-ray Fluorescence analysis;  bASTM C 430; cASTM D 6276; dOHD (Oklahoma Highway Department) L-49 test method, which is the 
Method of Test for Determining Soluble Sulfate Content in Soil; eEthylene glycol monoethyl ether method [39]; fEPA 9081 test method; No. 
325: 0.045 mm 
 
(alumina content), Fe2O3 (iron content), SSRa (silica sesquoxide 
ratio of additive), CaO (calcium oxide), MgO (magnesium oxide), 
ACA (alkali content of additive), FL (free lime content), LOI (loss 
on ignition), P325 (percent passing No. 325 sieve), pHa (pH of 
additive), SSAa (specific surface area of additive), SSRm (silica 
sesquoxide ratio of soil-additive mix), σ3/Pa (confining 
pressure/atmospheric pressure), and σd/Pa (deviatoric 
pressure/atmospheric pressure). The output layer consists of one 
node, representing Mr/Pa. For each ANN model developed, a trial 
and error approach was used to find the number of nodes in the 
hidden layer(s), in search of the optimal model. After the 
architecture was set, the development dataset was fed into the model 
for training. To examine the strengths and weaknesses of the 
developed models, they were evaluated by comparing the predicted 
Mr values with the experimental values (or measured values) with 
respect to the R2 values. Thus, a higher R2 value was considered a 
better fit of the evaluation dataset. Previously, several researchers 
have used R2 as an indicator of model performance [40-41]. 

Radial Basis Function Network (RBFN) 

 
The radial basis function network (RBFN) divides the modeling 
space using hyperspheres. The centers and radii are used to 
characterize these hyperspheres. The RBFN units respond 
non-linearly to the distance of points from the center represented by 
a radial unit. The response surface of a single radial unit is the 
Gaussian (bell-shaped) function, peaked at the center, and 
descending outwards [26, 43-44]. Therefore, the RBFN has three 
layers: input, hidden, and output. The hidden layer consists of radial 
units. It models the Gaussian response surface. The two most 
common methods for assigning the center of the radial units are 
sub-sampling and K-Means algorithm [26, 41].  

The RBFN model has one hidden layer. A trial and error approach 
was used to determine the optimal number of nodes in the hidden 
layer. Following this approach, the optimal number of nodes in the 
hidden layer producing the least root mean square error (RMSE), 
was found to be 18, as shown in Fig. 1. The R2 value of the RBFN 
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Fig. 1. Selection of Number of Nodes in Hidden Layer (RBFN) for Training and Testing Sets. 
 

 
Fig. 2. Predicted Mr Versus Measured Mr for P-, V- and C-soil 
using RBFN 25-18-1 Neural Network Model. 
 
model is 0.6207, which is the lowest among all the statistical and 
ANN models used in this study. Fig. 2 shows an overall comparison 
between measured and predicted Mr values for this model. 
Significant scatter is observed for the entire data range, justifying a 
low R2 value. Based on these results, it is clear that RBFN is 
incapable of predicting the development dataset. However, the R2 
value for fewer specimens is close to 1. For example, predicted Mr 
values show a good correlation (R2 = 0.9012) with experimental Mr 
values for 3% lime-stabilized P-soil and 5% CKD-stabilized V-soil 
specimens, as shown in Fig. 3. The correlation becomes weaker as 
more soil and additives types are included in the dataset. 
 
Multi-Layer Perceptrons Network (MLPN) 

 
The MLPN is one of the popular network architectures in use today 
[22, 44-46]. The MLPN consists of an input layer, a number of 
hidden layers, and an output layer. In each of the hidden layers, the 
number of nodes (also called neuron) can be varied. Due to the 

 
Fig. 3. Predicted Mr Versus Measured Mr for Two Mr Tests: 3% 
lime-stabilized P-soil and 5% CKD-stabilized V-soil using RBFN 
25-10-1 Neural Network Model. 
 
number of layers and the number of nodes in each layer, the MLPN 
can adjust the architecture of the network based on the complexity 
of the problem. In STATISTICA 8.0, the MLPN has up to three 
hidden layers available. Each of the nodes in the network performs a 
biased weighted sum of their inputs and passes this activation level 
through a transfer function to produce its output. The weights and 
biases in the network are adjusted using a training algorithm. The 
training algorithms available in STATISTICA 8 are back 
propagation, gradient descent, conjugate gradient, and 
quasi-Newton [26]. 

In MLPN, the weighted sum of input components is calculated as 
[44-45]:   
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Fig. 4. Selection of Number of Nodes in Hidden Layer (MLPN) for Training and Testing Sets. 
 

 
Fig. 5. Neural Network Architecture of MLPN 25-9-1.  
 
hidden layers, Sj is the weighted sum of the jth neuron for the input 
received from the preceding layer with n neurons (or inputs for 
MLPN with one hidden layer), Wij is the weight between the jth 
neuron and the ith neuron in the preceding layer, xi is the output of 
the ith neuron in the preceding layer (or inputs for MLPN with one 

hidden layer), and Qi is the constant bias term. Once the weighted 
sum Sj is computed, the output of the jth neuron yj is calculated with 
an activation function, sigmoid in this case, as follows: 

 
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ji
S

Sfy



exp1

1           (2) 

where  is a constant used to control the slope of the semi-linear 
region. The sigmoid nonlinearity activates in every layer except the 
input layer [45-46]. 

In the present study, the MLPN model was developed with one 
hidden layer. The number of nodes in the hidden layers was selected, 
as nine, based on minimum RMSE by using a trial and error 
approach, as shown in Fig. 4. The architecture of the developed 
MLPN model is illustrated in Fig. 5. The neurons of the input layer 
receive information from outside the environment and transmit to 
the neurons of the hidden layer, without performing any calculation. 
Then, the hidden layer processes the incoming information and 
extracts useful features to construct the mapping from the inputs 
space and interconnects each other through weights. The neuron of 
last layer, called the output layer, produces the network prediction to 
the outside world in the form of Mr values. 

The training algorithm used in the study is the conjugate gradient 
algorithm, activation function is sigmoid function, and number of 
epochs is 5,000, producing an error of less than 10-6 per 100 cycles. 
As a result of the training, the network produced 9 x 25 weights (W) 
and 9 bias values (Qi) connecting input and hidden layer, 9 x 1 
weights (W2) and 1 bias value (Q) connecting hidden layer and 
output layer. Table 3 presents a list of the final weights and bias 
values. With these weights and bias values, the network is able to 
simulate Mr values with the trained data and to predict Mr values 
with the untrained data by using following equations: 
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Table 3. Weight and Bias Values for MLPN 25-9-1. 

Weights (ij) 
Number of Hidden Layer Neurons (j) 

1 2 3 4 5  6 7 8 9 
Between Input and Hidden Layer 

W1j (UCS/Pa) 0.7849 -0.2768 -0.4757 -0.7488 -0.3004 -0.6057 -0.2175 -0.6374 -0.5808 
W2j (MC) -0.2339 -0.3610 -0.4485 -0.3660 0.1410 0.0192 -0.3717 -0.2784 -0.0769 
W3j (DUW/w) 0.1414 0.0763 0.1269 0.0510 0.3162 -0.4473 -1.9853 -1.0919 0.9099 
W4j (P200) -0.1455 0.2050 -0.6296 -0.3227 -0.0140 0.2394 -0.0842 -0.6616 -0.0189 
W5j (PI) -0.1268 -0.0302 0.4097 -0.0823 -0.0651 0.1827 -0.2170 0.0563 -0.0482 
W6j (CC) 0.0414 -0.0964 0.0139 -0.0245 -0.1234 0.5100 -0.2283 0.1011 0.3436 
W7j (pHs) 0.6026 0.6030 -0.1112 0.4181 0.0286 0.5532 0.2384 0.2701 0.2605 
W8j (SSAs)  0.0932 -0.0469 0.2761 0.2811 -0.0070 0.0062 -0.0125 -0.0087 -0.0044 
W9j (CEC) -0.1407 0.5116 1.4874 0.7090 0.1179 0.2400 -0.1110 0.4663 0.3095 
W10j (PA) 0.3427 -0.4081 0.5317 0.5927 -0.1045 -0.1115 -0.0787 -0.0072 -0.0460 
W11j (SiO2) -0.0769 -0.0565 -0.0937 -0.0767 -0.0852 -0.0178 -0.0697 0.0973 0.0112 
W12j (Al2O3) 0.2679 0.0830 0.2180 0.3672 -0.1492 0.1319 0.0133 -0.1156 -0.2717 
W13j (Fe2O3) 0.0508 0.8503 -0.1267 -0.1323 -0.1328 0.0454 -0.2398 -0.1594 -0.1061 
W14j (SSRa) -0.3170 -0.2456 -0.2431 -0.2376 -0.2884 -0.0872 0.0412 0.6130 -0.0230 
W15j (CaO) -0.0830 -0.0955 -0.2227 0.0881 -0.0618 0.1889 -0.3144 0.0350 0.4890 
W16j (MgO) -0.0860 0.0378 -0.0123 -0.4499 0.1731 0.0169 -0.2102 0.3254 0.0249 
W17j (ACC) 0.1233 0.0478 0.1394 0.1016 0.0063 -0.1280 0.2603 0.4927 -1.0806 
W18j (FL) 0.6707 -1.5454 -0.7059 0.0926 0.8779 0.0639 0.4461 0.1220 0.2625 
W19j (LOI) 0.2201 -0.7126 0.0994 0.2387 -0.2065 0.3945 -0.1745 -0.0968 -0.1482 
W20j (P325) 0.0653 -0.5064 -0.0065 0.2077 -2.7049 -0.6988 0.1553 0.2068 -0.3732 
W21j (pHa) -0.1558 -0.0510 0.2445 -0.0054 0.6924 0.0392 -0.1549 -0.0408 0.9005 
W22j (SSAa) -0.1839 -0.0622 0.4394 -0.5280 0.1013 -0.0296 0.0777 -0.1034 0.0928 
W23j (SSRm) 0.0014 0.2497 0.0841 -0.3350 -0.3646 -0.1201 -0.1905 -0.2597 -0.3332 
W24j (σ3/Pa) 0.2257 -0.6296 -0.3056 0.1483 0.1646 0.1695 0.0118 0.1503 0.1561 
W25j (σd/Pa) 0.1277 0.1610 0.1236 0.1076 0.0899 0.1620 0.0953 0.0014 -0.5593 
Bias Qj -0.3421 -0.0373 0.2645 -0.1617 -0.3442 0.0294 0.0885 -0.0228 0.2484 

Between Hidden and Output Layer 

W2
j (Mr/Pa) 1.4071 0.6943 0.7252 1.3595 0.4442 -0.3108 -0.2729 -0.7253 0.6157 

Bias Q 0.6435         

 

where, 
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Functions F2, F3,…, F9 can be obtained by employing weights 
Wi-2, Wi-3, …, Wi-9 (i = 1 – 25), respectively in Eq. (4). By 
employing the aforementioned approach, the R2 value of the MLPN 
model was found to be 0.9872, indicating that the MLPN model is 
expected to better correlate to the Mr values than the RBFN (0.6207) 
model. Fig. 6 shows a comparison between the experimental and 
predicted values of Mr values for the MLPN model. It is clear that 
the level of scatter in data points reduced significantly for this 
model. It is also evident that the predicted values are closer to the 

equality line. 
 
Validation of Models 

 
As noted earlier, a different dataset of Mr values of stabilized V-soil 
specimens was used for validation. This provides different views on 
the prediction quality and the importance of datasets on regression 
analysis [42, 47-48]. Additionally, a comparison was made between 
the differences in the R2 values of the development/evaluation 
dataset and the validation dataset.   

The RBFN model predicted the Mr values of the validation 
dataset with a low R2 value of 0.3172. Fig. 7 shows a comparison of 
the prediction quality of the RBFN model for the validation dataset. 
It is observed that the data points start to deviate to a “banded” 
distribution ranging between approximately 700 – 1000 MPa, as 
shown in Fig. 7. The effect is presented as a narrow horizontal band 
indicating a poor prediction. Also, Se/Sy values of greater than 1 
indicate low quality of Mr prediction achieved by using the RBFN 
model. On the other hand, the R2 of the validation dataset for the 
MLPN model was found to be 0.9582 (Fig. 7). The corresponding 
Se/Sy value for the MLPN model was found to be less than 1 
(0.5985). It is also evident from Fig. 7 that the scatters for the 
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Fig. 6. Predicted Mr Versus Measured Mr for P-, V- and C-soil 
using MLPN 25-9-1 Neural Network Model. 
 

 
Fig. 7. Predicted Mr Versus Measured Mr for K-soil Using RBFN 
25-18-1 and MLPN 25-9-1 Neural Network Models. 
 
MLPN model are closer to the equality line as compared to the 
scatter of the RBFN model. Overall, the MLPN model appears to be 
the best model for the present (development/evaluation and 
validation) datasets. 
 
Sensitivity Analysis 
 
A sensitivity study was conducted on the best performing MLPN 
model to evaluate the effect of each independent variable. In 
pursuing this sensitivity analysis, only one independent variable was 
changed at a time.  First, the average and standard deviation of 
each independent variable were determined from the combined 
evaluation/development and validation datasets. The corresponding 

results of the mean and standard deviation of each independent 
variable for MLPN model is shown in Table 4. Then, Mr value was 
calculated by inputting the average values of each independent 
variable into the corresponding models and this calculated value 
was called the “primary Mr value.” A series of Mr values were then 
calculated by changing (within plus and minus of one-half standard 
deviation) one independent variable at a time, while the rest of the 
independent variables were kept at their mean values. The series of 
the Mr values thus obtained were compared with the primary Mr 
value. It is also worth pointing out that one-half standard deviation 
was used instead of one standard deviation because it was found that 
one standard deviation may change the independent value to an 
extent beyond the range of the original independent parameters used 
in this study. 

The results of the sensitivity analysis of MLPN model are 
presented in Table 4. Only unconfined compressive strength 
followed by moisture content showed significant sensitivity in the 
MLPN model. These two independent variables had more than a 5% 
difference in comparison to the Mr values. Free-lime content 
followed by passing No. 325 sieve of additive, passing No. 200 
sieve of additive, SSA of additive, percent of additive, PI of soil, 
calcium oxide content of additive, Fe2O3 content, loss on ignition, 
deviatoric stress, SSR of soil-additive mixture had only modest 
influence (2 – 5 percent) on Mr. Dry unit weight, clay content, pH 
of soil, CEC, and confining stress had less than 1% difference in the 
comparison of Mr values. The rank of each independent variable 
considered here based on the sensitivity result is presented in Table 
4. The reason for the low effect of dry unit weight may be that the 
influence of dry unit weight is overshadowed by other material 
parameters. Low sensitivity of confining stress is consistent with the 
observations reported by other researchers. 
 
Concluding Remarks 

 
In this study, a total of two feed-forward-type ANN models, were 
evaluated to correlate resilient modulus with specimen 
characteristics and soil/additive properties. An Mr database was 
developed using laboratory test results on 160 specimens prepared 
by using four soils stabilized with three additives, namely, lime (3%, 
6% and 9%), CFA (5%, 10% and 15%) and CKD (5%, 10% and 
15%) was used. Of these, three soils namely, P- (silty clay), V- (lean 
clay) and C- (fat clay) soil were used in development/evaluation, 
and the remaining one soil (K-soil, lean clay) was used in the 
validation of the selected models. The following points highlight the 
assessments and evaluations of these models: 
1. For the RBFN model, with one hidden layer, the R2 value for 

the development/evaluation dataset showed worst performance 
(0.62) among all the ANN models used in this study. Also, it 
was found that the R2 value for fewer specimens is close to 1 
but the correlation becomes weaker and appears in a “banded” 
distribution as more soil and additives types are included in 
the dataset. Further, study showed that RBFN model predicts 
Mr values of validation dataset with lowest reliability (R2 = 
0.32, Se/Sy = 1.26). 

2. The R2 value of the MLPN model with one hidden layer was 
found to be 0.99 for evaluation/development dataset. Based on 
R2 value and visual examination, this model appeared to be 
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Table 4. Sensitivity Study for the Neural Network MLP 25-9-1 Model. 
Independent Variables Averagea Standard Deviation Percent Differentb + Rankb + Percent Differentc –  Rankc –  
Primary Mr (MPa) 889.8 --- --- --- --- --- 
UCS (kPa) 810.5 543.3 32.72 1 -36.14 1 
MC (%) 77.3 43.3 6.34 2 -5.86 2 
DUW (kN/m3) 19.3 4.0 1.30 14 0.13 25 
P200 (%) 16.5 0.8 -3.04 5 3.65 5 
PI 92.8 4.7 3.94 3 -2.96 8 
CC (%) 17.6 9.1 0.08 24 -0.59 22 
pHs 37.5 13.6 1.59 9 -0.84 21 
SSAs (m2/g) 7.3 2.0 -2.67 7 1.03 18 
CEC (meq/100g) 98.3 25.6 -1.37 13 0.96 20 
PA (%) 14.4 6.9 -3.35 4 3.01 7 
SiO2 (%) 8.4 4.0 0.85 20 -0.99 19 
Al2O3 (%) 17.8 15.3 -0.24 23 -1.07 17 
Fe2O3 (%) 7.1 7.4 -1.40 12 -2.47 10 
SSRa 2.7 2.3 -2.59 8 0.28 23 
CaO (%) 3.6 1.8 1.26 15 -2.81 9 
MgO (%) 46.2 18.0 -0.79 22 -1.89 14 
ACA (%) 2.5 1.9 -0.95 17 -1.54 16 
FL (%) 1.4 0.9 -0.92 18 -4.23 3 
LOI (%) 17.1 20.1 0.97 16 -2.27 11 
P325 (%) 19.7 13.5 1.47 11 -3.66 4 
pHa 92.7 5.2 2.73 6 -1.81 15 
SSAa 12.3 0.3 0.80 21 -3.36 6 
SSRm 11.6 4.5 0.85 19 -2.12 13 
σ3 (kPa) 10.6 4.5 -0.02 25 0.16 24 
σd (kPa) 27.6 11.2 -1.55 10 2.12 12 
areference value; bindependent variable plus one-half standard deviation (Note: some plus one standard deviation values are out of variables 
range); cindependent variable minus one-half standard deviation. 

 
the best model. Further, validation of MLPN model using a 
different dataset showed Se/Sy value of 0.60 and R2 value of 
0.96 indicating high quality of Mr prediction achieved by 
using the MLPN model.  

3. Overall, the MLPN model was found to be the best model for 
the present development/evaluation and validation datasets. 
This model as well as the other models could be refined using 
an enriched database.  

4. The sensitivity ranking of MLPN model showed that the 
resilient modulus values are most sensitive to unconfined 
compressive strength and moisture content. The confining 
stress, on the other hand, is the least sensitive independent 
variable for the soils and additives considered in this study. 
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