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Estimating Indirect Tensile Strength of Mixtures Containing Anti-Stripping
Agents Using an Artificial Neural Network Approach

Tejash Gandhi', Feipeng Xiao®*, and Serji N. Amirkhanian®

Abstract: The objective of this study was to develop a series of artificial neural network (ANN) models to predict the indirect tensile
strength (ITS) and tensile strength ratio (7SR) of various mixtures considering five input variables such as asphalt binder source,
aggregate source, anti-striping agents (ASA), conditioning duration, and asphalt binder content. The results indicate that ANN-based
models are effective in predicting the I7'S and TSR values of mixtures regardless of the test conditions and can easily be implemented in a
spreadsheet, thus making it easy to apply. In addition, the developed ANN models can be used to predict (or estimate) the ITS values of
the mixtures used in other research projects. Furthermore, the results also show that the asphalt binder source, aggregate source, and
asphalt binder content are the most important factors in the developed ANN models while the conditioning duration is relatively
unimportant (i.e., it has less effect on the /TS values in comparison with other variables). In addition, the sensitivity analysis of input
variables indicated that the changes of ITS values are significant as the changes of the most important independent variables.
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Introduction

The best efforts of highway engineers in designing and constructing
asphalt pavements are often undermined by environmental factors
such as water, temperature variations, sunlight, etc. Each of these
factors alone is not individually harmful, but when coupled with
large volumes of traffic, they frequently lead to significant problems
with the durability of the pavements. The phenomenon of breaking

the bond between the aggregate and the binder is known as stripping.

Stripping usually begins at the bottom of the pavement layer, and
travels gradually upwards [1]. A typical situation is the gradual loss
of strength over the years, which causes many surface
manifestations such as rutting, corrugations, shoving, raveling,
cracking, etc [2-7]. To prevent moisture susceptibility, proper mix
design is essential. However, even with a proper mix design, among
many other factors if the mix is not compacted properly, it may still
be susceptible to moisture. Thus, hot mix asphalt (HMA) should be
tested in a situation similar to real-world where it is typically
compacted to 7 percent air voids. For this reason, the tests for
moisture susceptibility are usually conducted on mixes containing 7
+ 1 percent air voids [5-8]. There are many ways to prevent
stripping in a pavement, however, the use of anti-stripping agents
(ASAs) is the most common [9, 10]. One of the most commonly
used ASAs in the United States is hydrated lime [10-12]. Others
include liquid ASAs like amines, di-amines, liquid polymers, and
solids like Portland cement, fly-ash, flue dust, etc. Pavement
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contractors usually prefer liquid ASAs as they are relatively easy to
use [13]. However, ASAs from an approved list of sources should
not be blindly added as some ASAs are aggregate and asphalt
specific, and therefore, may not be effective to be used in all mixes;
they could even be detrimental at times. Thus, a proper study of the
mix should be conducted by systematically testing the mix for
moisture susceptibility; using tests like indirect tensile strength
(ITS), Lottman’s and boiling water tests, among many other tests; in
the laboratory.

Several studies have been conducted to evaluate the effectiveness
of hydrated lime as well as liquid ASAs [13-14]. However, most
laboratory studies conducted to assess the moisture susceptibility of
mixes evaluated the short term effects of moisture on the mix. The
ITS test, for instance, tests the moisture susceptibility of mixes after
conditioning the samples in water for only 24hrs. This may not
always be representative of the actual field conditions, and thus
might be, in some cases, a misrepresentation of the actual moisture
susceptibility of the pavement itself. In a previous study conducted
by Lu and Harvey [15], the long term effects of moisture on the
effectiveness of the ASAs were studied. From the study, it was
observed that most of the detrimental effects of moisture occurred in
the first four months.

The research project reported in this paper evaluated the long
term effects of moisture on the moisture susceptibility of several
mixes. ITS tests were performed on dry and wet conditions. The wet
samples were conditioned in water for 1, 7, 28, 90, and 180 day(s)
and the results were compared. A total of 600 samples were
prepared and tested.

The ITS (wet and dry) and tensile strength ratio (ZSR) values of
the mixtures involving a number of interacting factors or
engineering parameters such as the binder source, aggregate source,
anti-stripping additive, conditioning duration, and asphalt binder
content are too complicated to be described mathematically.
Increasingly, modern pattern recognition techniques such as neural
network and fuzzy systems are being considered to develop models
from data to give the ability to learn and recognize trends in the data
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Fig. 1. Experimental Design.

pattern. Artificial neural networks (ANN) are useful in place of
conventional physical models for analyzing complex relationships
involving multiple variables and have been successfully used in
civil engineering applications such as process optimization, slope
stability analysis, and deep excavation forecast models [16-23].

The objective of this study was to develop a series of ANN
models to predict the ITS values of various mixtures at five
conditioning durations (i.e. 1, 7, 28, 90, and 180 day(s)). The
importance and sensitivity analyses of input variables were
performed to evaluate the influences of each independent variable
on the dry and wet I7S values of the mixtures. The additional ITS
values from other projects were used to validate the developed ANN
models in this study.

Experimental Materials and Procedures

The Superpave method of mix design for a nominal maximum
aggregate 12.5mm was used for this study. Fig. 1 illustrates the
flowchart of the experimental design used in this laboratory
investigation. A total of 30 mix designs (2 binder sources x 3
aggregate sources X 5 different ASA treatments) were conducted.
The bulk specific gravity, maximum specific gravity, voids in
mineral aggregate (VMA), and voids filled with asphalt (VFA) were
obtained or calculated to determine the optimum asphalt content of
all the 30 mixes.

The aggregates used in this study were obtained from three
sources, denoted as A, B, and C. The types of aggregate received
from each quarry consisted of #57, #789, Regular Screenings (RS),
and Manufactured Sand (MS). Each type of the aggregate (Table 1)
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Table 1. Aggregate Properties.

Sieve Size  Gradation = Combined Gradation (% Passing)
(1mm) Range Agg. A Agg. B Agg.C
38 100 100 100 100
25 100 100 100 100
19 98 — 100 99 100 100
12.5 90 -100 94 94 94
9.5 74-90 89 84 85
4.75 46 - 62 49 49 51
2.36 25-41 30 39 32
0.150 4-12 6.6 8.5 8.1
0.075 2-8 3.34 5.12 5.01
Stone Type % Used in the mix
#57 9 11 30
#7189 61 46 32
RS 20 17 20
MS 10 26 18
Properties
Aggregate Type Micaceous Marble Granite
Granite Schist
Bulk Specific Gravity 2.700 2.830 2.610
9% Absorption 0.77 0.49 0.62
Los Angeles Loss, % 52 23 26

was randomly obtained from quarry stockpiles and transported to
the laboratory. The aggregates obtained were then tested for
gradation as per the ASTM C 136, Method for Sieve Analysis for
Fine and Coarse Aggregate. Table 1 contains the gradation properties
of the aggregates used, and the percentage of each aggregate type
used. Two different sources of binder were used in this project, both
PG 64-22, denoted as I (a mixture of crude sources that could not be
determined) and II (a Venezuelan crude source). The binders were
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Table 2. Asphalt Binder Properties.

Property Binder I Binder I
Original Binder

Viscosity, Pa-s (135°C) 0.405 0.626
G*/sin §, kPa (64°C) 1.207 1.801
RTFO Residue

Mass Change, % (163°C) -0.02 -0.24
G*/sin §, kPa (64°C) 2.815 4.608
PAV Residue

G*.sin 9, kPa (25°C) 2970 2420
Stiffness (60), MPa (-12°C) 183 129
m-Value (60) (-12°C) 0.311 0.345
PG Grade 64 -22 64 -22
Mixing Temperature®, °C 150 - 155 163 -170
Compaction Temperature®, °C 139 - 144 150 — 155

*Information provided by the supplier

transported to the laboratory in sealed containers to prevent
oxidation and premature aging. Table 2 gives the properties of the
binder sources.

Four different anti-stripping agents were used in this project.
They were commercially available hydrated lime, three liquid ASAs
denoted as 2, 3, 4, and 5, respectively. The fifth treatment was the
control, no ASAs, denoted by ‘1’ in this paper. In the mixes
containing hydrated lime as the ASA, 1% hydrated lime by weight
of the aggregate, was added in a slurry form. In the mixes
containing liquid ASAs, 0.5% liquid ASA, by weight of the binder,
was added to the binder. This ASA content rate was based on the
0.25 to 0.75% recommended by the suppliers.

Knowing the optimum binder content for each of the mix designs,
ITS samples were made for each of the mix types. Four samples for
each age (e.g., 1 day, 90 days, etc.) were prepared to test the ITS.
Two of which were stored as dry samples at 25 + 1°C, and two were
stored as wet samples. If the samples were to be tested after 1 day,
the wet samples were submerged in a water bath (60 = 1°C) for
24hrs followed by submersion in another water bath at 25 + 1°C for
2hrs before testing. For conditioning durations of more than 1 day,
the wet samples were submerged in a water bath at 25 + 1°C for one
day short of that specific duration (e.g., 6 days, 27 days, etc.) and
then they were submerged in a water bath (60 + 1°C) for 24hrs
followed by submersion in water at 25 + 1°C for 2hrs before testing.
All the wet samples were vacuum saturated to a saturation level of
70 to 80% before immersing in water.

The wet ITS and the TSR were used as the measure of stripping
for each of the mixes. To study the effects of ASAs and aggregates
on the mixes, a Randomized Complete Block Design (RCBD) was
developed with the ASAs as the treatment variables and the
aggregate sources as the block variables. Similarly, the RCBD was
developed with the binder source as the block variable to study the
effects of the binder sources. Analysis of variance (ANOVA) was
then performed to test the null hypothesis (mean ITS (or 7SR) of
each treatment and block variables are not significantly different
from each other) at the 5% level of significance.

ANN Model Development

The neural network approach may be used to develop the predictive

Vol.2 No.1 Jan. 2009

Gandhi, Xiao, and Amirkhanian

[ Input layer ]Eé[ Hidden layer ]EQ[ Output layer ]

/e

< ]

Fig. 2. A Schematic Diagram of Three-Layer Artificial Neural
Network.

models of the ITS and TSR values of the mixtures considering the

interaction of complicated variables. In this study, a three-layer

feedforward neural network, shown in Fig. 2, was trained with the

experimental data. This architecture consists of an input layer (5

variables), a hidden layer (6 neurons), and an output layer (one

variable). Each of the neurons in the hidden and output layers
consists of two parts, one dealing with aggregation of weights and
the other providing a transfer function to process the output.

An artificial neural network can be presented by the following

properties in mathematical terms [23-26]:.

1. Each neuron or node consists of a simple processing unit.

2. A state variable is associated with each node.

3. A real-valued weight wy; is associated with each link between
nodes 7 and j.

4. A real-valued bias b; is associated with each node i.

5. A transfer function, f;, is defined for each node, i, which
determines the state of the node as a function of its bias, the
weights of its incoming links, and the states of the nodes
connected to it by the links.

6. A pattern of connectivity among the nodes is defined.

A propagation rule is defined.

8. Alearning rule is defined.

For the three-layer network shown in Fig. 2, the outputs of the
network, the ITS (ITSp and ITSw) and TSR values, are calculated as

follows [18]:

ITS /TSR = fT{BO + z‘[wk fr [BHK + Z H} (1)

i=1

~

Where,

B, = bias at the output layer,

W = weight of the connection between neuron k of the hidden layer
and the single output layer neuron,

By = bias at neuron k of the hidden layer,

W, = weight of the connection between input variable i and neuron
k of the hidden layer,

P; = input i parameter, and

fr=transfer function, defined as:

fr)=—— @

1+e”
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Fig. 3. Wet ITS of the Samples at Different Conditioning Durations in (a) 1, (b) 7, (c) 28, (d) 90, and (e) 180 Day(s).

In this study, the independent variables included asphalt binder
sources (Bg), aggregate sources (Ag), anti-stripping additives (A7),
conditioning durations (Ap), and asphalt contents (Ac). The
dependent variables were selected to be the wet and dry ITS values
(ITSw and ITSp) and TSR values. In Eq. (1), the number of input
variables (m) is 5; the input variables (defined previously) are
P;=Bg, P,=Ags, P;=Ay, P,=Ap, and Ps=A.. The number of hidden
neuron (n=6) is determined through a trial and error procedure;
normally, the smallest number of neurons that yields satisfactory
results. In this study, the backpropagation algorithm was used to
train this neural network. The objective of the network training
using the backpropagation algorithm was to minimize the network
output error through determination and updating of the connection
weightsand biases. Backpropagation is a supervised learning
algorithm where the network is trained and adjusted by reducing the
error between the network and the targeted outputs. The neural
network training starts with the initiation of all of the weights and
biases with random numbers. The input vector is presented to the
network and intermediate results propagate forward to yield the
output vector. The difference between the target and the network
outputs represents the error. The error is then propagated backward
through the network, and the weights and biases are adjusted to minimize
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the error in the next round of prediction. The iteration continues
until the error goal (tolerable error) is reached. It should be noted
that a properly trained backpropagation network would produce
reasonable predictions when it is presented with input not used in
the training. This generalization property makes it possible to train a
network on a representative set of input/output pairs, instead of all
possible input/output pairs [23-25].

Many implementations of the backpropagation algorithm are
possible. In the present study, the Levenberg-Marquart algorithm is
adopted for its efficiency in training networks [24-26]. This
implementation is readily available in the popular software Matlab
and its neural network toolbox [24]. In this study, ANN is treated as
an analysis tool.

Experimental Results and Discussions

The Superpave method of mix design was used to determine the
optimum binder contents of various mixtures. After conditioning the
samples for 1 day and 7 days, mixes with hydrated lime gave the
highest wet ITS, as shown in Fig. 3. They were followed by mixes
with the liquid ASAs. The control treatment was the least effective.
After 28 days of conditioning, no general trend was observed. It was

Vol.2 No.1 Jan. 2009
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Fig. 4. TSR of the Samples at Different Conditioning Durations in (a) 1, (b) 7, (c) 28, (d) 90, and (e) 180 Day(s).

observed that certain aggregate/ASA or binder/ASA or
aggregate/binder/ASA combinations work better than others. In
general, hydrated lime seemed to be the most effective ASA. For
longer durations of conditioning, namely 90 and 180 days, it can be
noted that mixes with hydrated lime and the liquid ASAs were
equally effective, and performed better than mixes with no ASA
treatment. A similar set of ANOVA tests, at the 5% significance
level, were performed on the TSR values of the samples (Fig. 4).
Based on these results, it was observed that mixes with hydrated
lime and the liquid ASAs gave similar 7SR values when conditioned
in water for durations beyond 1 day. After conditioning the samples
for 1 day, mixes with hydrated lime gave the highest 7SR values,
followed by the liquid ASAs with no significant difference in their
effectiveness, then followed by the control treatment. The horizontal
line in Figs. 3 and 4 referred to a minimum required I7S value of
448kPa and TSR value of 85%, respectively.

As shown in Fig. 3, in most cases, it was observed that mixes
with aggregate source B gave the highest wet ITS after all
conditioning durations. Mixes with aggregate sources A and C
followed with no significant difference in their mean wet ITS values
after all conditioning durations. As far as the effect of the aggregate

Vol.2 No.1 Jan. 2009

source on the TSR of mixes was concerned (Fig. 4), there was no
significant difference in the values of the mean 7SR for mixes with
different aggregate sources. This was the case at 1 day as well as at
7 days. However, at 28 days, mixes with aggregate source B showed
significantly lower TSR values compared to the other aggregate
sources. This may be explained due to the reason that mixes with
aggregate source B showed exceptionally higher dry ITS compared
to the mixes with other aggregate sources. After longer durations of
conditioning (90 and 180 days), there was no significant difference
in the TSR values of the mixes with different aggregate sources.

Fig. 3 indicates that the mixes with binder I generally gave
higher wet ITS at 1 day, except in the case of mixes with aggregate
source B, where the mean strengths of mixes with both binders were
not significantly different. After other conditioning durations, there
was no significant difference in the mean wet ITS of the mixes with
either binder source. In addition, Fig. 4 shows that the binder source
did not seem to have any effect on the TSR values of the mixes used
in this research after all conditioning durations.

ANN Model
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Table 3. Sample Training and Testing Data of /7S Samples.

No. Bg Ag Ar Ap Ac  ITSp ITSy TSR

type type type days (%) kPa kPa (%)

1 1 1 1 1 58 754 400 53
2 1 1 1 1 58 829 398 48
3 1 1 2 1 59 845 717 85
4 1 1 2 1 59 810 679 84
5 1 1 3 1 59 892 636 71
6 1 1 3 1 59 821 681 83
7 1 1 4 1 57 718 656 91
8 1 1 4 1 57 731 669 92
9 1 1 5 1 57 917 834 91
10 1 1 5 1 57 749 799 107
11 2 1 1 1 46 686 366 53
12 2 1 1 1 46 690 307 45
61 1 1 1 7 58 792 436 55
62 1 1 1 7 58 794 375 47
63 1 1 2 7 59 767 638 83
64 1 1 2 7 59 763 651 85
65 1 1 3 7 59 766 653 85
121 1 1 1 28 58 868 406 47
122 1 1 1 28 58 722 413 57
123 1 1 2 28 59 859 641 75
124 1 1 2 28 59 743 710 96
125 1 1 3 28 59 639 690 108
238 2 3 4 90 57 820 492 60
239 2 3 5 90 53 88 634 72
2 5

240

Pw

9 53 831 606 73
298 2 3 4 180 57 883 513 58
20 2 3 5 180 53 917 523 57
300 2 3 5 180 53 843 514 6l

Note: Bg= binder source; Ag= aggregate source; A= ASA type; Ap
=conditioning duration; A¢ =asphalt content; and ITSp, ITSy= dry
and wet indirect tensile strengths, respectively.

Statistical analysis results indicated that the developed multi linear
and non-linear regression models only provided a poor prediction of
ITS and TSR values, thus these models were not used for prediction.
The measured ITS values of the testing specimens were used to
develop the ANN models. The original dependent and independent
data of the ITS values were categorized in accordance with the
specimen conditions (wet or dry). In this ANN model study, binder
sources I and II were referred to as 1 and 2, respectively. Aggregate
sources A, B, and C were denoted as 1, 2 and 3, respectively. For
anti-stripping agents, the control, lime, and three liquid agents were
referred to as 1, 2, 3, 4, and 5, respectively. The independent
variables of ANN models included only five basic input variables
(i.e., asphalt binder source, aggregate source, anti-stripping additive,
conditioning duration, and asphalt content). The dependent variables
were selected to be the ITS and TSR values. Each of 300 dry ITS
values and 300 wet ITS values were employed to develop the ITS
and TSR ANN models. Among 300 data sets, 200 were selected
asthe training data set, and the other 100 were used as the testing
data set. The sample training and testing data sets are shown in
Table 3. The overall ANN models used a goal error of 0.00001 and
an epoch of 1000 in this study. The sampling process is largely
random, since no effort was made to keep track of the characteristics
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Fig. 5. Predicted and Measured ITS Values of ANN for Dry Samples,
(a) Training and (b) Testing Data Set.

of input and output variables. While randomness in the data
selection was largely maintained, the training data set is believed to
be representative [27].

The developed ANN model, expressed in terms of the connection
weights and biases in the three-layer topology, can then be used to
predict ITS and TSR values for any given set of data (B, As, A, Ap,
and A¢) using Eq. (1). Note that Eq. (1) can easily be implemented
in a spreadsheet for routine applications. The spreadsheets for dry
ITS and wet values are shown in Tables 4 and 5, respectively. While
time consuming to develop the ANN models, use of the ANN-based
spreadsheet model to calculate ITS value is simple and rapid in
execution. Figs. 5 and 6 show the results obtained from the ANN
models (in the form of Eq. (1)) for the dry and wet ITS values,
respectively. As shown in Fig. 5, the R* values of ANN dry ITS
model are 0.8709 and 0.8105 for training and testing data sets,
respectively. The RMSE values of this model are 58.70 and
70.17kPa for two data sets. Fig. 6 indicates that, for wet ITS model,
the R? values of training and testing data are 0.8709 and 0.7931, and
their RMSE values are 46.07 and 63.56kPa. Based on a minimum
wet ITS value of 448kPa (South Carolina Department of
Transportation specification), it can be noted that some of wet ITS
values are less than this value. As described previously, the control
samples exhibit the ITS values less than 448kPa after a long term
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Table 4. Spreadsheet of ANN Model for Dry ITS Samples.

1A B C D E F G H I

2 COMMANDS OF EXECUTING EQ.1 Hidden Layer

3 ARGUMENT("Bs","As","A7", "Ap","Ac") Weight matrix Hidden1 Hidden2 Hidden3 Hidden4 HiddenS5 Hidden 6
4 Bias 16.780  322.217  2.450 -3.183 20.886 -2.222
5  Bg=(Bjs-0.875)/1.25; As=(A5-0.75)/2.5 Input 1 55.889  -226.025  6.360 10.812 2.778 -6.480
6 Ar=(Ar-0.5)/5; Ap=(Ap-21.375)/223.75 Input 2 -64.432  -142.517  -8.262 4.357 -41.706 8.600
7 Ac=(Ac-4.1)2 Input 3 -122.166  -40.763 1.547 -8.359 -0.955 -1.929
8 Input 4 -130.961 -58.980 1.840 4.928 -20.872 -1.799
9  pil=1/(1+EXP(-(5 *D$5+S , *D$6+B *D$7+ITS *D$8+ Input 5 69.351 -235.729  -0.793 -4.193 9.935 0.207

10 M  *D$9+D$4)))

11 pi2=1/(1+EXP(-( *E$5+S , *E$6+B *E$T+ITS *E$8+

12 M  *E$9+E$4)))

13 pi3=1/(1+EXP(-(y *F$5+S , *F$6+B *F$7+ITS *F$8+

14 M g *F$9+F$4)))

15 pid=1/(1+EXP(-(y *G$5+S , *G$6+B *G$T+ITS *G$8-+

Weight matrix:
Cell D17 is B,
Cells D18: D23 are W,

‘Weight matrix:
Cells D4: 14 are By
Cells D5: I9 are Wy,

16 M i *G$9+G$4))) Output Layer

17 pis=1/(1+EXP(-(y *H$5+S , *H$6+B *HS$7-+ITS *H$8+ Bias -46.325

18 M g *H$9+HS4))) Hidden 1 0.948

19 pi6=1/(1+EXP(-( ¥I$5+S , *I$6-+B *I$7+ITS ¥1$8+  Hidden 2 -0.848 Cells B3:B25 are
20 M g *1$9+1$4))) Hidden 3 49.023 macro commands to
21 Z=pil*D18+pi2*D19+pi3*D20+pi4*D21+pi5*D22+ Hidden 4 -1.735 execute Eq.1

22 pi6*D23+D17 Hidden 5 -1.456

23 Z=1/(1+EXP(-Z)) Hidden 6 46.577

24 Ln(F)=54.18*Z+134.89
25 RETURN (F)

Table 5. Spreadsheet of ANN Model for Wet ITS Samples.

1A B C D E F G H I

2 COMMANDS OF EXECUTING EQ.1 Hidden Layer

3  ARGUMENT("Bg","Ag","A;", "Ap","A¢") Weight matrix Hidden 1 Hidden?2 Hidden3 Hidden4 Hidden5 Hidden 6
4 Bias -43.658  11.526 1.433 -81.701 4.664 -4.207
5  Bg=(Bs-0.875)/1.25; Ag=(A5-0.75)2.5 Input 1 36.377  -19.431 0.525 -38.175 -17.342 0579
6  Ar=(Ar-0.5)/5; Ap=(Ap-21.375)/223.75 Input 2 7.376 -0.666 -5.083  -59.097  7.392 2.608
7 Ac=(Ac-4.D12 Input 3 4.280 -1.720  -21.924 151.677 4.291 3.252
8 Input 4 0.007 -0.041 1.114 55.273 0.003 -3.927
9  pil=1/(1+EXP(-(n *D$5+S ;, *D$6+B *D$7+ITS *D$8+ Input 5 2.669 -0.661 4.103 -46.789  2.680 0.630

10 Mg *D$9+D$4)))

11 pi2=1/(1+EXP(-(y *E$5+S , *E$6+B *E$T+ITS *E$8+

12 M g *ES9+E$4)))

13 pi3=1/(1+EXP(-(y *F$5+S , *F$6+B *F$7+ITS *F$8+

14 M g *F$9+F$4)))

15 pid=1/(1+EXP(-(y *G$5+5 , *G$6+B *G$7T+ITS *G$8+

‘Weight matrix:
Cell D17 is B,
Cells D18: D23 are Wy,

Weight matrix:
Cells D4: 14 are Byi
Cells D5: 19 are Wy,

16 M ; *G$9+G$4))) Output Layer

17 pis=1/(1+EXP(-(y *H$5+S , *H$6+B *H$7+ITS *H$8+ Bias -1.890

18 M *H$9+H$4))) Hidden 1 1908.108

19 pi6=1/(1+EXP(-(y *I$5+S , *I$6+B *I$7+ITS *I1$8+  Hidden 2 1907.656 Cells B3:B2S are
20 M g *1$9+1$4))) Hidden 3 -4.397 macro commands to
21 Z=pil*D18+pi2*D19+pi3*D20+pid*D21+pi5*D22+ Hidden 4 0.833 execute Eq.1

22 pi6*D23+D17 Hidden 5 -1905.484

23 Z=1/(1+EXP(-Z)) Hidden 6 2.844

24 Ln(F)=14.62*Z+135.13
25 RETURN (F)

conditioning (e.g 90 and 180 days). In comparison with the two Similarly, the ANN 7SR models of the specimens were
developed ANN models (dry and wet), a similarly accurate implemented in accordance with Eq. (1). The comparisons of the
prediction can be made. measured and predicted IS and TSR values are shown in Fig. 7. It
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Fig. 6. Predicted and Measured ITS Values of ANN for Wet Samples,
(a) Training and (b) Testing Data Set.

can be noted that this ANN model has the R? values of 0.8543 and
0.7057 for training and testing data sets while their RMSE values
are 8.63 and 8.68kPa, respectively. Although different materials and
testing conditions were used in the project, the predicting
performance of the trained neural network, as shown in Figs. 5 and
6, is considered satisfactory.

Sensitivity analysis of ANN model

Due to highly complex and non-linear form of analysis of ANN,
additional sensitivity analysis was conducted to estimate the impact
of input variables on the output. During sensitivity analysis process,
one input parameter was changed slightly (approximately + 5 to
10%) from the initial condition, while the remaining parameters
were kept constant. The predicted performance ITS values were then
determined. Further modification of the parameter consequently
yielded increases/decreases in the predicted performance ITS values.
This process was repeated for all input variables or modifications.
Otherwise, the descriptive input variables (e.g., binder source,
aggregate source, and ASA type) used 100% as a gap for switching
these material types in this study. The five input variables (B, As, Ap,
Ap, and A,) were considered in the sensitivity analysis of the
performance model for the mixtures at dry and wet conditions. Figs.
8 and 9 are plotted on axes depicting relative changes in both input
and output parameters. The output variable data set was segregated
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Fig. 7. Predicted and Measured 7SR Values of ANN, (a) Training
and (b) Testing Data Set.

into several groups regarding predicted and measured results during
plotting the trend curves. This segregation of expected ranges of
performance temperatures illustrates the non-linearity of the
proposed models and the performance of the output at various ITS
and TSR values. For example, the dry ITS values were categorized
as ITSp< 628kPa, ITSp = 628-1034kPa, and ITSp > 1034kPa based
on the scope of the measured values. The changes of the input
variable values were dependent on their categories. This method
facilitates visualization of the relationship between input and
corresponding output (i.e., a relative change in an input parameter
yields a relative change in the performance I7S value) [28].

As shown in Figs. 8 and 9, the input variables show that the
changes of input variables result in the changes of output values for
the specimens tested in dry and wet conditions. The linear trends
were also studied for sensitivity analysis of each input variable. In
this study, the asphalt binder source, aggregate sources, and
anti-stripping agents, the describing input variables, were designated
as the whole number, thus the interval changes of them were 100%.
Fig. 8(a) indicates that the change of binder source yields a
noticeable percent change of the ITS value. For the conditioned
specimens, their ITS values also change slightly as the asphalt
binder source changes (Fig. 9(a)). As described previously (Fig. 3),
the same conclusion that the binder source slightly affects the ITS
value is obtained as using ANN model sensitivity analysis. These
relationships are considered likely due to the variation in physical
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and chemical properties of binder sources at the various mixing
conditions.

Similar to asphalt binder sources sensitivity analysis, aggregate
sources obviously affect the ITS values of mixtures regardless of the
conditions of the specimens. As shown in Figs. 8(b) and 9(b), the
increase or decrease of percent change in the aggregate sources (i.e.,
various aggregate sources) resulted in an increase or decrease in
percent change of the ITS values only means the change of ITS
values due to the various aggregate sources. It seems that these
various aggregate sources are able to affect the ITS values of the
mixtures influenced by their different physical and mechanical
engineering properties.

Figs. 8(c) and 9(c) present results of the sensitivity analysis on
the anti-stripping agents of the mixtures performed in this study for
dry and wet specimens, respectively. The results indicate that the
change of the anti-stripping agents is related to a remarkable change
in the magnitude of the mixture ITS value for three categories
regardless of their testing conditions. Similarly, the increase or
decrease in ITS percent is only as a result of the use of different
ASA.

As shown in Figs. 8(d) and 9(d), the sensitivity analysis of
conditioning duration shows that the percent change of I7S values is
slight as the percent change of conditioning duration increases from
-60% to 60% for three categories regardless of the dry or wet
specimens. It can be noted that the short-term conditioning duration
does not noticeably affect the ITS values.

The percent change of asphalt binder content in the mixture
significantly affects the percent change of ITS values regardless of
the testing conditions. In most cases, Figs. 8(e) and 9(e) indicate
that the increase of asphalt binder content results in a decrease of
ITS values.

Important index analysis of ANN model

Yang and Zhang [29] suggest that the relative strength of the effect
of an input variable on the output can be derived based on the
weights stored in the network. They define the relative strength of
effect (RSE) for each input variable on each output variable. The
equation is expressed as follows,

RSE = CZ Z ZWIth(ﬂk )vvin_linG(/qin)"ﬁ]iliZ G(ﬂﬂ) (3)

in in-1 il

Where
¢ = anormalized constant;
G(h) = exp(-A/(1+exp(-A0)’;
Wi, = weight of the connection between input variable i and neuron
k of the hidden layer;

K =2 Wi + By >
1

By = bias at neuron k of the hidden layer; and

fr = transfer function.

The important indices for the five input variables, Bs, Ag, Ag, Ap,
and A, were obtained from Eq. (3) and are shown in Fig. 10.
However, these weights should be viewed only as a rough estimate,
as they are determined based on the same assumption that only one
input variable at a time is allowed to vary although the developed
ANN is highly nonlinear [30].
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Although two types of ITS specimens have the same most
important index, asphalt binder content (S,), other independent
variables exhibit different important indices due to moisture
sensitivity. For dry ITS specimen, it can be noted that asphalt binder
source (Bg) and aggregate source (Ag) are relatively more important,
as shown in Fig. 10(a). Other independent variables like
anti-stripping agent (A7) and conditioning duration (Ap) are
relatively unimportant as reflected in the behavior of the developed
ANN. For the wet ITS specimens, as shown in Fig. 10(b), it can be
found that several input variables such as asphalt binder source (Bg),
aggregate source (Ag), and anti-stripping agent (A7) are relatively
more important while only the conditioning duration (Ap) is
relatively unimportant (i.e., it has less effect on the ITS values in
comparison with other variables). In comparison with the dry ITS
specimens, as expected, anti-striping agents exhibit a relatively
unimportant index in the wet ITS specimens. Thus, the anti-stripping
agents are beneficial in improving the moisture resistance of the
mixtures. The important index analysis indicates that the ITS value
is strongly correlated with those relatively important indices and
their test results can be used to predict the I7S values of the asphalt
mixtures.

Validation of ANN model

The ITS values from other projects were employed to validate the
developed ANN models. The five given input variable values were
used with the developed ANN models to calculate the predicted ITS
values and compared with the measured data. Fig. 11 shows the

Vol.2 No.1 Jan. 2009



—~ 1500
s RMSE = 171.59 -
% 27 data sets % o:
£ 1000 - A%
>
= 500 1 /
8
L -~
3
6: O T T
0 500 1000 1500
Measured ITS values (kPa)
(@
—~ 1500
s RMSE = 184.24 s
% 25data sets L
€ 1000 - %@%w
o
£ 500 - o
=
8] L
L2 -~
B
E O T T
0 500 1000 1500
Measured ITS values (kPa)
(b)

Fig. 11. Validation of ANN Model for (a) Dry ITS (b) Wet ITS.

measured values and those predicted values by the developed ANN
models. The results generally show small differences between the
predicted and measured ITS values of the mixtures for two types of
testing conditions. For instance, the RMSE value of the ANN model
for the dry ITS specimens is 171.59kPa and the data sets used for
model validation is 27. The ANN model of wet ITS specimen has a
RMSE value of 184.24kPa and used 25 data sets, which can be
considered satisfactorily for the developed ANN.

Conclusions

The artificial neural network (ANN) is becoming a prevalent
engineering tool for deriving data-driven predictive models, as the
developed ANN can easily be implemented in a spreadsheet module
for practical applications. Based on the analysis of the experimental
data of the ITS values at two testing conditions, this study
determined that:

1. The ANN approach, as a new modeling method used in this
study, can effectively create a feasible predictive model using
five variables from the binders and mixtures. The established
ANN-based models could effectively and accurately predict the
ITS and TSR values, as it is proven by higher R? and lower
RMSE values regardless of the test conditions. These ANN
models can easily be implemented in a spreadsheet, thus
making it easy to apply.

2. The sensitivity analyses of five input variables indicated that, in
most cases, the percent changes in input variables significantly
affect the percent changes of the ITS values. The sensitivity of
input variables is strongly related to the category of ITS values
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and the test conditions due to the moisture sensitivity properties
of the asphalt mixtures at the various test conditions.

3. The important indices of five input variables could be
calculated using the method developed by Yang and Zhang.
The results show that the asphalt binder source, aggregate
source, and asphalt binder content are the most important
factors in the developed ANN models to predict I7S values
regardless of test conditions, while anti-stripping agents is
relatively unimportant in dry I7S model but is relatively
important in wet ITS model. Moreover, it was found for the
materials tested for this research that the conditioning duration
is relatively unimportant for two types of ITS specimens as
compared to the other four independent variables.

4. The developed ANN models could satisfactorily predict the ITS
values as shown by validation results using the I7S values from
other research projects
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