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─────────────────────────────────────────────────────── 

Abstract: In this paper, an integrative model for autogenous and drying shrinkage predictions of concrete at early-age is introduced first. 

Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of 

interior humidity in concrete. Using the two models, the distribution of shrinkage strain in early-age concrete pavements under the 

condition that the pavement surface suffers to dry is calculated. Afterwards, the shrinkage stress resulted from the nonlinear shrinkage 

strain is calculated by dividing the shrinkage strain into uniform strain, linear strain and nonlinear strain. The model results show that the 

gradient of shrinkage strain and stress along the slab depth is obvious under the condition that the slab top suffers to dry. The maximum 

and minimum shrinkage strain and stress occurs at slab top and bottom respectively. The distribution of shrinkage strain and stress along 

the pavement depth are nonlinear and the nonlinearity is strong close to the drying face and the rest is weak.  
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Concrete shrinks as moisture is lost to the environment or by 

self-desiccation. As concrete shrinks, a certain amount of tensile 

stresses will be developed in the structure due to restraints from 

adjunct materials or connected members. The stresses may exceed 

the tensile strength and cause concrete to crack. Cracking in 

concrete members reduces the load capacity of the structure. 

Moreover, cracks allow water and other chemical agents, such as 

deicing salt, to go through the cover layer to come into contact with 

the reinforcements, leading to reinforcement corrosion and rupture 

in steel reinforced concrete. The magnitude of the shrinkage strain is 

normally proportional to the amount of moisture lost [1-3]. 

Generally, there are two manners leading the moisture loss in 

early-age concrete. As environmental humidity is lower than the 

humidity inside of concrete, water in concrete evaporates and 

shrinkage of concrete arises, which is conventionally called drying 

shrinkage. Another manner of moisture loss is through cement 

hydration, which causes concrete to shrink also and ordinarily is 

called autogenous shrinkage. In practice, more water loss may 

happen at the places where are close to surfaces of concrete 

elements. Thus, shrinkage gradient should exist in concrete 

structures and corresponding nonlinear shrinkage stresses should be 

resulted. However, the effects of shrinkage gradient occurred in 

concrete structures have not properly been taken into account in the 

analyses of shrinkage stress in the structures due to the lack of an 

appropriate model to relate the shrinkage strain and the amount of 

local moisture loss.  

This article focuses on the numerical modelling of the distribution 

of shrinkage strain and stress in early-age concrete pavement in 

which the shrinkage gradient is seriously taken into account. In the 

modelling, an integrative model for autogenous and drying 

shrinkage prediction of concrete at early-age is introduced first. 

Second, a model taking both cement hydration and moisture 

diffusion into account synchronously is used to calculate the 
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distribution of interior humidity in concrete. Using the models, the 

distribution of shrinkage strain and stress in early-age concrete 

pavements under the condition of the pavement suffering to dry is 

calculated.   

 

Modeling on Moisture Variation Induced Strain 

 

In fresh concrete, all pores between cement and other solid particles 

are initially filled with water. After setting of fresh concrete, a stiff 

skeleton is formed and the chemical contraction produced by 

cement hydration cannot completely transfer to macroscopic 

shrinkage of concrete. Therefore, with continuation of cement 

hydration, a number of capillary pores between cement particles are 

gradually formed and corresponded meniscuses are created to 

compensate the volume decrease. Meanwhile, the interior humidity 

of concrete starts to decrease from the initial saturated state of 100% 

due to the continuity of liquid water gradually destroyed with the 

formation of capillary pores. Thus, the development of interior 

humidity of concrete (RH) at early ages can be described by a vapor 

saturated stage with 100% relative humidity (stage I) followed by a 

stage that the relative humidity gradually reduced (stage II). Based 

on the theory of capillary forces, the shrinkage strain developed in 

stage I and stage II due to the variation of water content resulted 

either by cement hydration or by environmental drying may 

correlate with chemical shrinkage and interior humidity reduction 

respectively as [4]: 
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where  is the influencing factor of stiffness, which is normally a 

function of water to cement ratio. Vcs and Vcs0 are the chemical 

shrinkage (in volume) at a given cement hydration degree and at the 

point where the interior humidity starts to decrease from 100% 
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respectively. M is the molar weight of water (0.01802 kg/mol),  is 

density of water and R is ideal gas constant (8.314 J/molK). K is 

bulk modulus of the whole porous body and Ks is bulk modulus of 

the solid material. p is obtained by introducing a parameter k0 in 

the accumulate pore volume as: 

)rkexp(1 0p                                      (2) 

where  is a parameter reflecting the impact of concrete age 

(reflected by cement hydration degree, ) on pore volume and may 

be simulated as  = a0e
, a0 and  are experimental determined 

constants. Parameter k0 is obtained by comparing model and 

experimental results [5]. Parameter S in Eq. (1) is called saturation 

fraction, S=Vew/Vp. Vew is the evaporable water content in the 

hardening cement paste, Vp is the total pore volume. S can be 

estimated through Powers’ volumetric models [6-7]. Assuming the 

hydration degree of cement is , and the total volume of cement 

particles and water is 1, the phase composition of a hardening 

Portland cement paste without silica fume addition, including 

chemical shrinkage Vcs, capillary pore water volume Vcw, gel water 

volume Vgw, gel solid volume Vgs and unhydrated cement volume Vc 

can be calculated through the following equation: 
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where Vi = 1, )/c/w/()c/w(p cw  . w and c are the 

weight of water and cement respectively in concrete mixture. w and 

c are the density of water and cement respectively. So the 

saturation fraction S can be calculated by: 
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The above equations can be used only for concrete without silica 

fume application. For the concrete with silica fume addition, the 

phase composition, including chemical shrinkage Vcs, capillary pore 

water volume Vcw, gel water volume Vgw, gel solid volume Vgs and 

unhydrated cement particles volume Vc as well as silica fume 

volume Vs can be estimated by Jensen et al. [7]: 
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where Vi = 1, s, c are the weight of silica fume and cement 

respectively. 
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saturation fraction S for concrete with silica fume addition can be 

calculated by: 
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The cement hydration degree,  can be calculated from 

isothermal tests. By measuring the adiabatic temperature rise of 

concrete at different time, the cement hydration degree is estimated 

by: 
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where Tad(t) is the adiabatic temperature rising at time t, Tad(∞) is 

the ultimate adiabatic temperature rising. u is the ultimate degree 

of hydration and is a function of water to cement ratio (w/c) as [8]: 
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To calculate the hydration degree under different temperature 

history, the equivalent age is used. The equivalent age concept 

assumes that samples of a concrete mixture of the same equivalent 

age will have the same mechanical properties or cement hydration 

degree, regardless of the combination of time and temperature 

yielding the equivalent age. Based on the above definition, the 

equivalent age te can be expressed as 
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where te is the equivalent age at the reference temperature (here the 

reference temperature is equal to 20oC is assumed). Uar and UaT are 

the apparent activation energy (J/mol) at reference and actual 

temperature respectively. R is the universal gas constant, 8.314 

J/molk. T is temperature in Celsius (oC). Regarding apparent 

activation energy, a number of researchers have concluded that it 

could not be considered as a constant independent of time except 

during the beginning of cement hydration [9-10]. Based on these 

findings, the apparent activation energy of concrete is expressed as a 

function of temperature and curing time as [11]: 
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where T is curing temperature (oC) and t is curing time in days. Due 

to the actual temperature T inside of concrete is varied with time, it 

is convenient to solve teq in matrix form instead of integrating. If the 

curing time is divided into n sections and the temperature in each 

time interval is assumed to be a constant, then we have 
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The section number n may depend on the required accuracy and 

normally can be equal to the time intervals for temperature 

measurement. Based on the equivalent age, the hydration degree of 

cement defined in Eq. (8) can be simulated by [11-12]: 
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where A and B are two empirical constants which can be determined 

by fitting isothermal experimental results and Eq. (13).  

Under drying condition, the moisture content in concrete will be 

less than that under sealed state and this moisture reduction will 

reduce the cement hydration degree. The effect of moisture content 

on cement hydration should be taken into consideration in the model 

by [5]: 
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Constants n and P can be determined from interior humidity 

measurements and isothermal tests. Thus for different drying 

process, the effect of interior humidity variation on cement 

hydration can be estimated by Eq. (13). The cement hydration 

degree at a given time te can be obtained by integrating Eq. (13) 

from 0 to te. As showed in Eq. (1), elastic modulus of concrete is 

also an important parameter for shrinkage calculation. After setting 

the elastic modulus of concrete starts to grow from zero. Based on 

the equivalent age, the development of the elastic modulus of 

concrete with age under varied temperature and drying status can be 

estimated by [13]:  
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where 0 is the hydration degree at concrete set. b is a constant that 

can be determined by fitting Eq. (14) with test data. The shrinkage 

model is based on the formation of capillary pores and resulting 

capillary stresses during the formation of cement matrix skeleton. 

Therefore, the model may be used for moisture loss resulted 

shrinkage prediction regardless if the moisture loss is caused by 

cement hydration or by environmental drying. Further, by applying 

present model, the calculation of shrinkage distribution in concrete 

in the case of humidity gradient existed becomes possible.  

The shrinkage model is verified by experiments [5]. Related 

material parameters used in the model are listed in Table 1. Fig. 1 

displays the cement hydration degree and equilibrium age diagrams 

of the two kinds of concretes with compressive strength at 28 days 

of 34.1 and 88.7 MPa respectively. Fig. 2 presents the comparisons 

between model predictions and experimental results for the two 

kinds of concretes in terms of shrinkage-age diagrams starting from 

concrete set to 28 days under both sealing and drying curing 

conditions. From the figure, we can observe that the model can well 

catch the characteristics of the development of shrinkage of concrete 

starting from set. Under drying condition, a high shrinkage is 

obtained in the experiments and in model prediction as well. 

Because the model combines the effect of age and position into a 

single physical parameter, RH, the model can predict shrinkage 

strain in concrete structures not only for discrete time, but also for 

different positions. Certainly, in order to do so, the moisture 

distribution, represented by relative humidity inside of concrete is 

required prior to use the model. 

 

 

Table 1. Parameters Used in Shrinkage Calculation. 

Concrete C30 C80 

η 0.004737 0.04573 

Hydration 

Degree 

Parameter 

u 0.8246 0.6261 

A 19.730 17.512 

B 0.6841 0.7980 

0 0.2444 0.2910 

c 0.5202 0.4899 

Elastic 

Modulus 

Parameter 

E28(GPa) 31.0 43.7 

Es(GPa) 72.9 72.9 

b 0.35 0.99 

Pore Structure 

Parameter 

k0 28.25 64.29 

a0 0.000673 0.0112 

 4.375 2.224 
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Fig. 1. Relationship of Cement Hydration Degree and Equivalent 

Age. 

 

Modeling on the Moisture Distribution in Early Age 

Concrete 

 

The loss of water in early-age concrete is normally caused by both 

of cement hydration and water diffusion. At the initial period after 

the concrete cast, most of the pores in concrete are filled by liquid 

water. The relative humidity in concrete is almost equal to 100%. 

Due to the process of water consuming is so slow that the period 

with 100% humidity, which is defined as stage I in the present paper, 

can last quite long time. When the water content in concrete pores 

decreases to a critical value, at which the vapor pressure becomes 

lower than the saturated value, the relative humidity starts to reduce. 

Starting from this moment, the progress of internal humidity goes 

into the stage II. Here we may define the length of stage I as the 

critical time tc, which is a function of both water to cement ratio and 

location from casting surface and can be determined by experiments 

[13]. In the stage II, the variation of water content in terms of 

relative humidity (RH) is resulted from both cement hydration (RHs) 

and water diffusion to environment (RHd). If one-dimensional water 

diffusion is considered, according to the second Fick’s law, the 

moisture content balance requires [13] 
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where parameter D is the moisture diffusion coefficient depending  
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Fig. 2. Comparison between Model and Test Results on Shrinkage of C30 (a) and C80 (b) Concretes. 

 

on the pore humidity and on the composition of concrete [14-17]. 

Here, RHs is the humidity reduction due to cement hydration. Let 

RH0=RH RHs, the above partial differential equation becomes: 
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For calculating the moisture distribution in concrete exposed to a 

given atmosphere with an initial condition of 100% relative 

humidity, Eq. (16) must be solved taking adequate boundary 

conditions and initial conditions into consideration. However, the 

relative humidity RH0 is a function of time (t) and location (x) in 

concrete and the moisture diffusivity D is also a function of pore 

humidity. Thus, the distribution of relative humidity along x 

direction cannot be solved from Eq. (16) directly. In order to 

overcome this difficulty, we define parameter F as: 
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Here Hm is a relative humidity that can be selected arbitrarily, 

normally is equal to the minimum humidity that may occur in 

concrete. From Eq. (17), we have 
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Using above equations in Eq. (18), we obtain 
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Thus, the problem for solving H0 under given time and location 

becomes solving F from Eq. (21).  

Chemical reaction between cement and water can lead to 

reduction of water content (represented by RH) also. And the 

magnitude of the humidity reduction resulted from cement 

hydration must be a function of hydration degree . In the present 

work, a modified cement hydration degree based model, which 

takes the initial liquid-water saturated stage (stage I) into account, is 

utilized to describe the humidity reduction due to cement hydration 

as indicated in Eq. (22). 
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where Hs,u is the relative humidity considering self-desiccation at 

ultimate degree hydration, which is a function of w/c and can be 

determined from experiments. c is a hydration parameter called 

critical hydration degree at which the humidity inside of concrete 

starts to decrease from 100% level, which can be calculated by 

applying the experimental determined critical time tc in Eq. (12). 

The parameter  is a constant.  

Using the developed model, we are able to obtain the complete 

humidity distribution field in early-age concrete. To verify the 

model, the progress of the humidity inside of concrete is 

experimentally determined. In the experiments, one dimensional heat 

and moisture transportation in concrete are made. Waterproof plywood 

mold with inner dimensions of 200200800 mm was used. To allow 

heat and moisture movement only along the specimen thickness 

direction, the inner surfaces of the mold were covered with a plastic 

sheet to prevent moisture loss and the five outer surfaces was covered 

with polystyrene board to prevent heat loss. Merely the casting face 

was kept to contact with air directly. In the tests, a digital humidity 

and temperature combined sensor was used to measure the humidity 

and temperature. Detailed specimen preparation and test procedures 

can be found in [13]. Meanwhile, humidity distributions of the 

concrete slabs are calculated using the developed model. Humidity 

dependent diffusivity of C30 and C80 concretes used in the model is 

shown in Fig. 3, which is determined from experiments [17]. The other 

related parameters used in the model are listed in Table 2. Fig.4 

displays comparisons between predicted humidity profiles and test 

results at some typical ages. 

 

Shrinkage Strain in Concrete Pavement 

 

As an example of application of above models, the distribution of 

shrinkage strain and stress in concrete pavements made of C30 and 

C80 concrete respectively is calculated. Assume the slab was cast 
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Fig. 3. Water Diffusion Coefficient Used in the Model. 

 

Table 2. Input Parameters Used for Humidity Field Calculation 

Concrete Hs,u β am (cm/day) 

C30 0.835 3.187 3.0 

C80 0.703 1.108 4.1 
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Fig. 4. Comparisons between Predicted Humidity Profile and 

Experimental Results of C30 (a) and C80 (b) Concrete Slabs. 

 

in spring morning that should influence the development of 

temperature inside of the slabs. Because the temperature in the slab 

at early-age is critically needed to calculate the degree of cement 

hydration, the development of temperature inside the pavement slab 

was calculated first in the modeling. After the development of 

temperature inside of concrete pavement is known, the shrinkage 

strain and stress induced by cement hydration and environmental 

drying can then be calculated. Regarding the details of the 

temperature field calculation may refer to author’s previous 

publication [18]. 

Fig. 5 presents the model results of the development of interior 

humidity and corresponding shrinkage strain at different places from 

top to bottom of the pavements made of C30 and C80 concretes 

respectively. From the results, first we can observe that the 

development of interior humidity inside of concrete with age obeys 

the two stage mode, that is a vapor saturated stage with 100% 

relative humidity (stage I) and a stage with the relative humidity 

gradually decreasing (stage II). The humidity gradient along the slab 

depth is significant and is varied with age. Under the condition that 

the slab surface undergoes drying, the length of stage I increases 

with the location from the slab top. Second, the shrinkage strain is 

well related with interior humidity. Within the stage I, a uniform 

shrinkage strain is expected throughout the slab. By contrast, the 

shrinkage gradient along the slab depth is quite obvious in the stage 

II and the maximum and minimum shrinkages occur at slab top and 

bottom respectively. That is because the humidity gradient starts to 

occur in this stage and the maximum and minimum humidity 

reduction appears at slab top and bottom respectively at the moment. 

The rate of shrinkage progress is gradually reduced from slab top to 

bottom in this stage, meaning that the effect of surface drying is 

confined within a certain range.  

The distribution of shrinkage strain along the C30 and C80 

concrete slab at some typical ages is displayed in Fig. 6. Clearly, 

shrinkage distribution along the pavement depth is apparently 

nonlinear. With development of age, the shrinkage gradient is even 

pronounced. Concrete strength can significantly influence the 

magnitude of shrinkage strain as well as its distribution in the slab. 

At a given age and location, the high the concrete strength, the 

larger the shrinkage strain and the greater the shrinkage gradient. 

Here we should note that the shrinkage at slab bottom is close to the 

magnitude of autogenous shrinkage of concrete and at the slab top 

surface is a result of a combination of autogenous and drying 

shrinkage. Apparently, high strength concrete will result in high 

shrinkage strain as well as high shrinkage gradient in concrete 

members. 

 

Shrinkage Stress in Concrete Pavement 

 

Decomposing of Nonlinearly Shrinkage Strain 

 

A simple illustration of concrete pavement used in modeling is 

shown in Fig. 7 and assume the length, width and height of the 

pavement slab are L, W and H respectively. y is the direction 

perpendicular to the slab length, x is the direction parallel to the slab 

length. The long ends of the slab are located at x = 0 and x = L, 

respectively. z is the direction parallel to the slab depth and the top 

and bottom ends of the slab are located at z = H/2 and z = H/2, 

respectively. In the case of the top surface of pavement experiences 

drying, the variation of shrinkage strain is only obvious through the 

depth of the slab, the influence of slab width and length can then be 
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(a)                                                        (b) 

Fig. 5. Development of Shrinkage Strain at Different Locations in Concrete Pavement, (a) C30 and (b) C80. 
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(a)                                                 (b) 

Fig. 6. Distribution of Shrinkage Strain along the Slab Depth at Some Typical Ages, (a) C30 and (b) C80. 

 

 
Fig. 7. Schematic Illustration of Concrete Pavement. 

 

neglected. To calculate the stresses resulted from nonlinear 

distributed shrinkage strain through the depth of the slab, first 

assume the cross section of the slab remains plane after bending. 

Thus, the slab can deform only in two ways, expanding or 

contracting along its axial direction and/or bending with the cross 

section remaining plate upward or downward. Based on this 

assumption, under the action of shrinkage stress, the resulted strain 

distribution through the depth of the slab (z) may be expressed as: 

BzA)z( w                        (21) 

where  is the nonlinear strain produced in the slab in order to 

maintain the plane assumption. w is the strain resulted from 

concrete shrinkage, which is positive and negative respectively as 

slab expands and shrinks. A and B are constants which can be 

obtained from w. The stress produced from  may be called 

nonlinear stress, n and can be expressed as: 


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)]BzA([E w
n                                (22) 

where E and  are elastic modulus and poisson’s ratio of concrete 

respectively. From the equilibrium conditions of nonlinear stress n 

[19], we have: 
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                                (23) 

As long as w is known, the constants A and B can be obtained. 

Apparently, A is average strain, and B is curvature. Thus, from Eq. 

(21), the shrinkage strain w can then be expressed as: 

nlanw BzA                             (24) 

where a, l and n are called average strain, linear strain and 

nonlinear strain respectively. Thus, the nonlinear shrinkage strain 

through the depth of the slab can be divided into three components 

accordingly: 1) a component of uniform shrinkage strain that 
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principally causes the slab expansion or contraction; 2) a linear 

component that causes the slab bending; and 3) the nonlinear 

component that remains after subtracting the uniform and the linear 

shrinkage strains from the total shrinkage strain.  

 

Shrinkage Stress Resulted from the Uniform Strain 

Component 

 

To calculate the shrinkage stress produced by the uniform strain 

component, first assume that the concrete behaves in a linear elastic 

manner and the base beneath the concrete slab is a rigid material 

and the deformation under action of the horizontal friction forces is 

ignored. Second, the resulted average strain in the slab support to 

simulate stress development along slab length is sufficient to reflect 

the magnitude of stresses in the slab. This consideration allows the 

mathematical model to be considered as one-dimensional problem. 

A concrete pavement section with width W, height H and length L is 

modeled, see Fig. 7. x is the direction parallel to the slab length and 

the ends of the slab are located at x=0 and x=L, respectively. Before 

derivation of the governing equations for the model, a law 

governing the slab/base interfacial friction stress-slippage relation is 

assumed as [20]: 

00
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u0foru
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                          (25) 

where u is the average slippage along thickness of slab relative to 

base at location x, given by 

)x(u)x(u)x(u a                                 (26) 

where u is the displacement induced by concrete shrinkage. ua is 

the displacement resulted from internal axial stress. 0 is the steady 

state frictional stress. 0 is the corresponding slippage as the 

frictional stress achieves 0. 0 and 0 are normally governed by the 

type of base and they can be determined by sliding tests with a 

laboratory size slab cast on a given base. When the slab is subjected 

to a uniform shrinkage strain in the direction of slab length, based 

on the above assumptions, the axial force equilibrium for a slab 

length dx in the presence of a thickness average axial stress a and 

slab/base interfacial shear stress  requires: 

0
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
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                                    (27) 

The first derivative of c with respect to x can be related to axial 

displacement ua by:  
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Replacing 
x

a


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with Eq. (30) in Eq. (29) and noting that
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  ), the general equation governing the 

average axial displacement distribution in the slab, u is 
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According to the magnitude of displacement, the slab may finally be 

divided into two sections on each of which a specific  should be 

applied [19]. 

 

Stage I: 0u  at x = 0  

 

In this case, the slab/base interfacial friction stress  linearly 

increases with the increase of slab slippage u and this linear friction 

stress-slippage relationship can be applied along the whole slab. 

Replacing  with the linear relation given by Eq. (27) in Eq. (29), 

we have:  

0u
EHx

u

0

0

2

2









                                    (30) 

To solve this differential equation with boundary conditions that 

u= 0 at x = L/2 and ac0a E/x/u    at x = 0, yields: 
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where 00 EH/    and a0 is average axial stress at x = 0 

along slab thickness. Here, we define a0 as negative if it 

compresses the slab and positive if it tensions the slab. Similarly, if 

a is negative, the shrinkage makes the slab shorter and if it is 

positive, it makes the slab longer. The sign of u is governed by the 

combined effect of a and a0. Positive u means that the slab 

becomes shorter and a negative value means that the slab becomes 

longer. From Eq. (28), the stress a can be expressed as 


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Substitution of u with Eq. (33) into Eq. (34) gives:  
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Stage II: 0u  at x = 0  

 

In this case, the slab should be divided into two sections according 

to the displacement relative to base. Now assume u=o at x = x0, for 

the section of 0 x x0, the slab/base interfacial friction stress is 

fully developed and the shear stress is a constant. Replace  with 0 

in Eq. (31), the general governing equation of u can be rewritten as  
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To solve this differential equation with boundary conditions that 

ac0a E/x/u    at x= 0 and u = 0 at x = x0, yields: 
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Similar to stage I, using Eq. (37) in Eq. (34), the stress in slab 

within this location can be expressed as  

0a0
2

a xE                               (36) 

For the section of x0< x  L/2, the slab/base frictional stress is 

being developed due to the small slab slippage (u0). The 

procedures used to solve the average displacement and stress fields 

in stage I can be applied in this section by simply replacing the slab 

length L/2 with (L/2-x0) and using a new boundary condition at x = 

x0 instead of at x= 0, i.e. ac00a E/x/u    at x=x0. a00 is 

the thickness average axial stress at x = x0. The displacement and 

stress fields in this section are given by  
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and 































































0

00a

0

aa

x
2

L
cosh

x
2

L
cosh

x
2

L
cosh

x
2

L
cosh

1E











     (38) 

where 0a00
2

c00a xE   . The length x0 can be numerically 

determined from Eq. (19) by setting x=x0 and u=0. It should be 

noted that a0 may be related to crack bridging law of concrete in 

general if the slab ends are associated with crack location. The 

present work is focused on analyzing the development of shrinkage 

stress in jointed concrete pavements at early-age, so that a0 = 0 is 

used in the examples of analyses.  

 

Shrinkage Stress Resulted from the Linear Strain 

Component 

 

The general solution for an elastic slab subjected to linear strain 

profile was given as 
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where x, y, z are the directions of slab length, width and thickness 

respectively. w is the displacement in the z-direction. The right side 

of the above equation represents the total curvature of the slab 

corresponding to the moment curvature in x and y direction and the 

curvature due to the linear strain gradient respectively. The stresses 

produced by the linear strain difference can be obtained by solving 

above differential equations with appropriate boundary and external 

restrained conditions. In the present work, research is focus on the 

solving of shrinkage stresses in concrete pavement in early-age. The 

slab is normally relatively long and the restrain action along the slab 

length is significant. So we may assume that 2w/x2 = 0. Thus from 

Eq. (39), we have 
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 In addition, the moment My can be related to the reacting force 

of base kw by 
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where k is the stiffness of the pavement base. Replace My with Eq. 

(40) in Eq. (41), the general governing equation of w can be 

rewritten as  
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with boundary conditions that My= 0 and dMy/dy = 0 at y = W/2 

yields: 
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here
2

0 Bl)1(w  , )8l/(WWl  . Thus replace w in Eq. (43) 

with Eq. (44), we can obtain the expression of the stress distribution 

in x and y direction through the depth of the slab as 
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(44) 

where )1(2/EBH0   , which is the stress as slab length and 

width are infinite and the deformation produced by the shrinkage 

differences is fully restrained. The maximum stress produced by the 

linear shrinkage component will occur at the section with y = 0 in 

the direction of x-axial. The stress distribution in the section of y = 0 

along x-direction, xz can be expressed as  
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function of slab width and depth as well as stiffness of slab and the 

supporting base.  

 

Shrinkage Stress Resulted from the Nonlinear 

Component 

 

According to the assumption that the cross section of the pavement 

remains plane under the action of shrinkage strain, the stress caused 

by the nonlinear component can be calculated by  
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Thus, the total shrinkage stresses produced by such nonlinear 

shrinkage strain in the slab can be obtained by summing the three 

stress components together as: 

nlat                                       (47) 

 

Creep Correction on the Shrinkage Stresses 

 

Creep of concrete leads to the stress relaxation. To correctly 

calculate the shrinkage stresses in concrete pavement, the effect of 

concrete creep must be taken into account. In the present paper, a 

method given by Zhu [19] is used to correct the effect of concrete 

creep. Assume the initial stress without considering of the effect of 

creep at time t0 is equal to 0. After the time period (t-t0), the stress 

becomes (t) due to the action of creep. Now assume the time 

interval (t-t0) is divided into n sections, △ t1, △ t2, △ t3,…△ ti,…△ tn, 

and the stress increment in each time section is △ σ1, △ σ2, 

△ σ3,…△ σi,…△ σn. Thus the stress at time t can then be given as: 
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1i

i0i ttt  . As taking the concrete creep into account, 

the stress with an initial value of (t0) after the time period (t-t0) can 

be calculated by: 
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where φ(t,t0) is called creep coefficient and can be calculated by 

Bazant et al [21]: 
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where φ1, d and p are material parameters. In present paper, φ1 = 0.9，

d = 0.32, p = 0.32 are used in the model calculation according to the 

reference [21]. Thus, the shrinkage stresses as considering the effect 

of concrete creep can be given as: 

Table 3. Frictional Restraint Characteristics of Typical Base. 

Base Type 0 (MPa) 0 (mm) k(GPa) 

Cement Stabilized 0.106 0.025 81 
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Analyses of Shrinkage Stress in Concrete Pavement 

at Early-Ages 

 

As an example of the model application, the shrinkage stress in 

concrete pavements made of C30 and C80 concrete respectively is 

calculated. The cement stabilized base is assumed and the friction 

restraint parameters between slab and base as well as the stiffness of 

base used in the model are list in Table 3. For modeling, it is 

assumed that the dimension of the slab is 10 meters in length, 4 

meters in width and 0.25 meters in thickness. The shrinkage stress 

calculation is based on above prediction of shrinkage strain (w).  

Fig. 8(a) shows the development of the total shrinkage stress in 

the middle section of C30 concrete slab with age, where the effects 

of location from top to bottom are displayed. Fig. 8(b) shows the 

development of the total shrinkage stress at slab top with age, where 

the effect of location in length direction is presented. Fig. 9 show 

analogous results of C80 concrete pavement. From these results, we 

can see that shrinkage stress occurred in concrete pavement under 

the condition that the slab top experiences drying are function of 

construction age, location in both length and depth directions. First, 

for given age and surface drying condition, the shrinkage stress 

increases with location in length direction and the maximum stress 

achieve at the center of the slab. Such behavior is the result of 

interfacial friction between slab and supporting base occurred 

during concrete shrinking. Therefore, the variation of shrinkage 

stress with location in length direction is only controlled by the 

average shrinkage strain component, A, which in turn is governed 

by the overall shrinkage distribution in the slab and its variation 

with age as well. Second, for given age and length location, the 

variation of shrinkage stress along slab depth is principally 

controlled by the shrinkage gradient. The linear and nonlinear strain 

components are the main contributor to such stress variation through 

the depth. Third, shrinkage stresses along the pavement depth is 

nonlinearly distributed. The stress gradient is more and more 

pronounced with time going. Fourth, concrete strength can 

significantly influence the magnitude of shrinkage stress, as well as 

its distribution in the slab. At a given age and location, the higher 

the concrete strength, the larger the shrinkage stress and the greater 

the stress gradient. In addition, we may be noted also from Fig. 9 

that the influencing scope of surface drying on the shrinkage stress 

is a function of concrete strength and age. Influencing depth 

increases with age for all three kinds of concretes. In the view of 

durability design of concrete structures, all above characteristics 

related to shrinkage stress occurred in concrete members should 

considerably be taken into account. 

 

Conclusions 
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(a)                                                  (b) 

Fig. 8. Development of Shrinkage Stress in C30 Concrete Pavement, (a) Showing the Effect of Location in Depth and (b) Showing the Effect 

of Location in Length. 
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(a)                                               (b) 

Fig. 9. Development of Shrinkage Stress in C80 Concrete Pavement with Consideration of Creep, (a) Showing the Effect of Location in Depth 

and (b) Showing the Effect of Location in Length. 

 

In this paper, an integrative model for shrinkage strain and stress in 

concrete pavements at early-age from concrete cast are simulated 

and analyzed. The model results show that the progress of internal 

humidity inside of pavement since concrete cast obeys two stage 

mode, that is a vapor saturated stage with 100% relative humidity 

(stage I) and a stage with the relative humidity gradually decreasing 

(stage II). Within stage I, a uniform shrinkage strain and stress is 

expected throughout the slab. By contrast, shrinkage gradient along 

the slab depth is quite significant in stage II and the maximum and 

minimum shrinkage strain and stress occur at slab top and bottom 

respectively. The distribution of shrinkage strain and stress along the 

pavement depth is nonlinear and the nonlinearity is strong close to 

the drying area. Concrete strength can significantly influence the 

magnitude of shrinkage strain and stress, as well as their distribution 

in the slab. 
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