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Artificial Neural Networks and Regression Analysis for Predicting Faulting
in Jointed Concrete Pavements Considering Base Condition

Behrooz Saghaﬁ“, Abolfazl Hassaniz, Roohollah Noori3, and Marcelo G. Bustos®

Abstract: Pavement management and maintenance is an important aspect of pavement engineering. Maintenance and rehabilitation
treatments should be chosen very carefully, considering financial resources and existing distress types. In jointed concrete pavements,
transverse joint faulting is a key distress which considerably influences ride quality and road smoothness. There are many factors
affecting joint faulting such as heavy traffic, pavement structure, climatic conditions, pavement age, etc. The condition of the base layer
is one of those important factors, having a big effect in the performance of jointed concrete pavements. Base layer takes part in both
early-age behaviour and long-term performance of jointed concrete pavements. In this research, Artificial Neural Networks (ANNs) and
Multivariate Linear Regression (MLR) have been applied in order to predict joint faulting. Pavement age and different base layer
parameters where considered in the analysis that used Long Term Pavement Performance (LTPP) project database. Research results show
that ANNs approach can predict joint faulting in jointed concrete pavements successfully and more accurately, showing a high
coefficient of multiple determination (R) values, besides very low amount of error.
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Introduction

Scope of Work
In the field of pavement engineering, the adequate selection of
rehabilitation activities to improve the condition of deteriorated
pavement section is a key factor from technical and economical
perspectives. Rough roads lead to user discomfort, increased travel
times, and higher vehicle operating costs that can lead to millions of
dollars in losses to the general economy [1]. So, the engineering
judgment and experience on deciding the maintenance and repair
actions have significant importance, and pavement maintenance and
management system should have the ability to perform evaluation of
the current pavement condition and to predict its future
performance.

Significant joint faulting has a major impact on the life cycle cost of
the pavement in terms of early rehabilitation and vehicle operating
costs [3]. The crucial importance of being able to predict the future
pavement condition can be understood easily when the financial
savings are considered.

In this study, artificial neural networks and multivariate linear
regression approaches have been applied to consider and to model
the effect of base layer conditions and pavement age on joint
faulting distress.

Concrete is widely used as a construction material in pavements
by public or private entities which manage highway networks, due
to its high durability and capacity to resist large amounts of traffic
loads or very severe climates. Transverse joint faulting is one of the
main types of distresses in jointed Portland cement pavements
(JPCP), that can be defined as the difference in elevation between
adjacent slab edges at a transverse joint (Fig. 1). Faulting evolution
across time is an important indicator of jointed concrete pavement
performance; as faulting increases, pavement roughness and
potential of erosion and loss of support beneath the slab are also
augmented [2].
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Faulting Process in Jointed Concrete Pavements

Joint faulting usually appears as the result of excessive deflection of
slab edges and corners caused mainly by heavy wheel loads and/or
inadequate load transfer across the joint [3]. Significant differential
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Fig. 1. Faulting of Transverse Joint [2].
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Fig. 2. Scheme of Faulting Progression in JPCPs (a) Wheel on Leave Edge of Slab, (b) Wheel on Approach Edge of Slab, and (c) Resultant

Behaviour at the JPCP Joint That Causes Faulting [5].
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Fig. 3. Devices Used to Measure Joint Faulting (a) The Georgia Faultmeter [7] and (b) Digital Faultmeter (Argentina) [8].

deflections impart energy to the underlying pavement material, and
when the base is composed of unstabilized or weakly stabilized
materials with a high percentage of fines, such deflections cause the
movement of the saturated fine material in the presence of free
water under the slabs, leading to pumping and erosion [4, 5].

Pumping is caused by the rapid vertical deflection of the leave
slab at a joint, which leads to an ejection of fines and water.
Eventually, this process results in a void below the leave slab corner
and in a deposition under the approach slab corner, which leads to
joint faulting (Fig. 2) [2-5].

Previous studies [2-4] show that there are many parameters
affecting faulting in jointed concrete pavements such as repeated
heavy traffic loads, insufficient load transfer between the adjacent
slabs, free water under the slabs, erodible base or underlying
fine-grained material (fines), climatic parameters, subgrade
condition, section age (after construction or traffic opening), etc.
Base type, base erodibility, and base structural aspects are some of
the most important parameters influencing the behaviour of jointed
concrete pavements [2, 3, 6], although this effect is more
pronounced for undoweled JPCPs [6].

Devices for Faulting Measurements

Faulting is measured at each joint at two locations, 0.3m from the
outside slab edge, called as edge faulting and 0.76m from the
outside slab edge, called as wheel-path faulting [2]. Such
measurements can be done using faultmeter devices. Georgia
Faultmeter, an electronic digital device used for gathering faulting
information, was designed, developed, and built by the Georgia
Department of Transportation, as shown in Fig. 3(a). It reads out
directly in milimeters and shows whether the reading is positive or
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negative [7]. Another type of faultmeter, used in Argentina for
specific studies [8], is shown in Fig. 3(b). It includes an electronic
device that measures the difference in height between the plane
defined by the footprints on the approach slab, and the point of the
device, located on the leave slab.

Base Layer in Jointed Concrete Pavements

Although current empirical design procedures such as AASHTO
1993 (American Association of State Highway and Transportation
Officials) indicate that the base layer provides only minimum
structural capacity to the pavement, this may be misleading. Base
condition plays a very important role since it influences both
early-age behaviour and long-term performance of JPCP. The
potential for base erosion has a significant impact on concrete slab
support and on the initiation and propagation of pavement distress.

Granular bases with a high amount of crushed materials, low fine
content, and low plasticity, considerably reduce pumping of
subgrade and improve resistance to the effects of moisture. However,
stability of these untreated permeable base layers is a major concern
because settlement can lead to serious problems and needs to be
addressed adequately [9].

Treated bases, on the other hand, are effective in reducing
pumping and controlling joint faulting. Pavements constructed on
cement-stabilized base materials, such as lean concrete bases,
typically experience less faulting and their corner deflections
generally are reduced [4]. Also, high-quality crushed aggregates are
needed to ensure long-term durability [9] in cement-stabilized
layers.

Hot-mix asphalt base materials can also be effective in
minimizing moisture problems in jointed concrete pavements.
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Generally, high asphalt content ensures adequate film thickness
around the aggregates, thereby increasing resistance to moisture [9].

Research Analysis Approaches

Two approaches were examined in this research: Artificial Neural
Networks (ANNs) and Multivariate Linear Regression (MLR)
method. The performance of two highly-used methods, ANNs and
MLR, in the problem of predicting joint faulting in jointed concrete
pavements is compared.

Artificial Neural Networks

ANNSs approach is a valuable computational tool that is increasingly
being used to solve resource-intensive complex problems as an
alternative to using more traditional techniques. ANNs have been
used in pavement deterioration [10, 11], pavement performance
prediction [12-16], flexible pavement cracking prediction [17], and
condition rating of jointed concrete pavements [18].

ANNs act very similar to the human brain, by receiving input
(data values) and processing them through a series of nodes that
organize themselves so as to best predict a certain output. Receiving
stimuli (inputs) numerous times and arriving at the best association
between the stimuli and an output is termed learning [19, 20].

Backpropagation ANNs are very powerful and versatile networks
that can be taught a mapping from one data space to another using a
representative set of patterns to be learned. Actually,
backpropagation algorithm is essentially a gradient descent
technique that minimizes the network error function [19, 21].
Involving two steps, in the first one, the effect of the input is passed
forward through the network and in the second step, an error
between the measured values (or targets of the model) and the
predicted outputs is estimated at the output layer. Then the
calculated error is backpropagated toward the input layer through
each hidden node to adjust the connection weights. After many
examples (training patterns) have been propagated through the
network for many times, the mapping function is learned with some
specified error tolerance. This is called supervised learning because
the network has to be shown the correct answer for it to learn [19].

Multivariate Linear Regression Method

MLR method is a primal, useful technique which has been applied
in all fields of engineering knowledge, in a large variety of model
making problems. Generally, Eq. (1) is the matrix form of a MLR
model.

Y=XB+e @

where Y is the response matrix, X is the matrix of explanatory
variables, S is the regression coefficient matrix and e is the fitting
error matrix. If Eq. (1) is solved for §, Eq. (2) will be developed.

B=X"X)"(X'Y) )

where X' is the transpose form of matrix X.
In this research, a model has been developed to predict faulting
distress considering base condition and pavement age, using the
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MLR technique. Stepwise algorithm has been used for regression
calculations, where the variables are evaluated in the model step by
step according to their importance in improving model performance.

Criteria for Assessing Model Performance

One of the criteria used for assessing the performance on both MLR
model and ANNs is coefficient of multiple determinations RH.
Legates and McCabe indicated that being R? affected by ‘far’ data,
other criteria are necessary for assessing model performance
accurately [22]. Therefore, two others, root mean square error
(RMSE) and mean absolute error (MAE) have been used to assess
model performance. The equations of these criteria are as follow:
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where if X is the matrix of explanatory variables (matrix of faulting
readings, in this research), x, is the actual value of X; with i = J,
2,--, n observations, x, is the average of X;, x, is the predicted
values of X; and n is the total number of observations.

LTPP Data Used for This Research

Long Term Pavement Performance (LTPP) program started in 1978
with a comprehensive study of in-service pavements and long-term
field experiments, monitoring more than 2,400 flexible and rigid
pavement test sections through United States and Canada. LTPP
database is mainly divided into two major categories namely
General Pavement Studies (GPS) and Specific Pavement Studies
(SPS) [23].

Transverse joint faulting is being monitored regularly at the
jointed concrete pavement test sections under the LTPP program,
using the Georgia Faultmeter. Average transverse joint faulting is a
representative faulting value of both edge and wheel-path faulting
for each site measurement. Joint faulting and base layer data used in
this research are gathered out of SPS-2 and GPS-3 databases,
including average transverse joint faulting (mm), age of the

Table 1. Inputs and Output Description.

Node Node Description Role
1 Age (months) Input
2 Base Material Input
3 Base Type Input
4 Thickness (cm) Input
5 Erodibility Class Input
6 Percent Passing No. 4 Sieve Input
7 Percent Passing No. 200 Sieve Input
8 Resilient Modulus (MPa) Input
9 Mean Transverse Joint Faulting (mm) Output

Vol.2 No.1 Jan. 2009



Table 2. The Results of Inputting Variables in the MLR Model.

Variable

Parameter Description Coefficient in Slgilgi?nce
MLR Model
Constant - -0.88385 <0.01
Input 1 (x1) Age (months) 0.008944 <0.01
Input 2 (x) Base Material 0.046697 0.01
Input 5 (xs)  Erodibility Class 0.22448 <0.01
Iput 6 (1) ey oS 0,01659 <0.01
Tnput7 (ry)  LoreentPassing 034415 0.04

No. 200 Sieve

pavement (months), base type and material description, base
thickness, erodibility, resilient modulus (MPa), etc.

Performance of ANNs for Predicting Faulting in
JPCP

In this study, a feed-forward, multi-layer, backpropagation network
was developed to predict joint faulting in jointed concrete
pavements, using 405 random observation data, gathered out of LTPP
SPS-2 and GPS-3 programs. Eight variables were selected as inputs,
and the output was the mean transverse joint faulting. Table 1
indicates the variables used as inputs and output.

The available data were split into three parts:

(1) atraining set, used to determine the network weights;

(2) a validation set, used to estimate the network performance and
decide when we stop training;

(3) a prediction (or test) set, used to verify the effectiveness of the
stopping criterion and to estimate the expected performance in
the future.

Materials used in the base layer of the inspected sections have
been divided into 14 different types by LTPP. As well, LTPP has
categorized base types into two main categories: granular bases
(GB), and treated bases (TB).

405 data were divided into three parts: training, testing, and
validation. In the training phase, 250 records (approximately 60% of
the whole data) were used by MATLAB 7.0 software to develop the
networks. In the testing phase, 80 (approximately 20% of the whole
data) unique faulting records were used as input for testing the
trained neural network. Remaining 75 records (approximately 20%
of the whole data) helped for validating the network. Validating is a
process applied in order to overcome network over-fitting, using
Stop Training Approach.

Several ANNSs architectures were studied to obtain the best results,
thus the network was trained using both 3- and 4-layered ones, each
layer including different numbers of neurons. Finally, the best
results were obtained by an 8-8-8-1 network structure, i.e. 8 neurons
in the input layer, 8 neurons in the first hidden layer, 8 neurons in
the second hidden layer, and a neuron in the output layer.

The developed ANNs model was able to successfully predict the
measured joint faulting with coefficient of R? values of 0.96 for the
training data set and 0.94 for the testing data set. MAE of both
training and testing sets was applied to inspect the amount of errors
between measured and predicted faulting values. Calculations
resulted in MAE = 0.09 for training and MAE = 0.23 for testing
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Training Set Results
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Fig. 4. Performance of the 8-8-8-1 Network for Predicting Joint
Faulting in JPCPs — Training Set Results.
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Fig. 5. Performance of the 8-8-8-1 Network for Predicting Joint
Faulting in JPCPs — Testing Set Results.

phases. These little levels of errors indicate that this network
architecture has been correctly designed. Figs. 4 and 5 depict the
actual versus predicted faulting values for both training and testing
phases.

To check that the dependent variable has a normal distribution,
the Kolmogorov-Smirnov method was used to confirm such
hypothesis [24]. Therefore, a simplified model was developed to
predict joint faulting using MLR and the stepwise algorithm of MLR
method, considering significance level of 5%. This could be done by
considering five variables (input parameters) out of eight as using
just five variables in the model could achieve the desired level of
significance. Table 2 shows the selected variables and their
corresponding significance level when co-operating in developing a
faulting prediction model.

Faulting =—0.88385+0.008944 x; +0.046697 x, +0.22448 x5
—0.01659x¢ +0.034415x;

R? =0.54; RMSE = 0.79; MAE = 0.55.

According to Table 2, the model presented in Eq. (6) shows
clearly the influence of parameters like pavement age and base layer
materials and characteristics on faulting. To compare the
performance of MLR model and the results taken from the selected
ANNS, performance details of the MLR model have been calculated
for the data used for training and testing ANNs and the results have
been demonstrated in Figs. 6 and 7.
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Fig. 6. Performance of the MLR Faulting Prediction Model —
Training Set Results.
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Fig. 7. Performance of the MLR Faulting Prediction Model —
Testing Set Results.

Discussion

To compare the performance of these two approaches, the criteria
calculated for each approach have been presented in previous
sections. Having noted to the mathematical definitions of the criteria,
MLR modelling results and ANNs performance already shown, it is
clearly obvious that the final ANN has been able to predict faulting
much more accurately since it has acquired higher R? values for
training and testing faulting data with very low amounts of errors.

Further, for demonstrating the performance of the approaches to
compare them more meaningfully, a scattering diagram has been
developed based on cumulative absolute mean errors, showing the
cumulative frequencies of data (%) against threshold error levels (%)
for both MLR model and ANN:S in testing stage. According to Fig. 8,
cumulative absolute error for whole testing data is less than 0.9%
when the faulting values have been predicted using ANNs but this
amount is less than 4.9% for faulting values predicted by the
developed MLR model. Also, trained ANNs could predict 75% of
faulting values with errors less than 0.3% while MLR model did so
with about 0.7% of errors. The overall diagram shows clearly that
the performance of the ANNSs is remarkably better than what MLR
model did.

Therefore, it is concluded that the trained ANNSs can predict
faulting values with less errors in comparison with the MLR model.
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Fig. 8. Performance of the MLR Faulting Prediction Model —
Training Set Results.

Nevertheless, the MLR model has the advantage of being easier to
be understood because the relative incidence of each variable is
directly addressed by the model.

Conclusions

This paper demonstrates a successful use of the artificial neural
networks (ANNs) to model the complex relationship between
pavement age and parameters related to base layer conditions and
joint faulting in jointed concrete pavements. The four-layer
back-propagation neural network proposed in this paper showed
strong prediction capability as it could predict the measured joint
faulting values with the coefficient of multiple determination 0.3}
values of 0.96 for training data set and 0.94 for testing data set, with
mean absolute error (MAE) of 0.09 for training data set and 0.23 for
testing data set. High amount of R? beside little error amounts imply
a valuable success in predicting joint faulting considering base layer
conditions and pavement age, using the 8-8-8-1 network. ANNs also
show a higher capacity to predict joint faulting more accurately,
compared with MLR models developed with the same data.
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