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─────────────────────────────────────────────────────── 

Abstract: A reliable pavement performance prediction model is essential for long-term pavement maintenance and rehabilitation 

planning. There are many factors affecting joint faulting such as heavy traffic, pavement structure, climatic conditions, pavement age, etc. 

Design features including dowel, base type, pavement thickness, joint spacing, drainage system, shoulder type are also important factors 

for faulting. So the factors selection has a big effect on the modeling. In this paper, the adaptability of the widely used Back-Propagation 

Network (BPN) pavement prediction method, using actual joint faulting data is studied. Prediction models with different factors, 

including 10-factor model, 8-factor model, 6-factor model and 4-factor model, are established and the prediction results are compared. 

Research outcomes show that the factors that choosing affect the prediction capability and 8-factor model is most effective. Then the 

proposed factor selection method can effectively support model development.  
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Introduction 

12
 

 

Joint faulting is one of the major distresses of cement concrete 

pavement. Rough roads caused by faulting lead to user discomfort, 

increased travel times, and higher vehicle operating costs. Therefore, 

it is significant that predicting pavement condition provides a basis 

for decision making for maintaining and repairing damaged 

pavement based on the on-site road usage. There are some 

researches focusing on the prediction of concrete pavement 

performance [1-6]. Khazanovich presented a summary of the 

procedures used to model the effects of transverse joint faulting in 

the design of jointed plain concrete pavements [7]. Robinson 

described the development of distress prediction models for 

Portland cement concrete pavements in Texas for the Texas 

Department of Transportation’s pavement management information 

system [8]. Solminihac presented rehabilitation performance 

prediction models of concrete pavements in incremental form [9]. 

Also, there is much research related to BPN modeling. However, 

there is no explicit study about factor selection method in 

back-propagation network prediction modeling. This paper presents 

a method to select the faulting factors for using the BPN method. 

Actual joint plain concrete faulting condition data collected from the 

LTPP program in the GPS-3 database is used for this study. 

Suggestions for BPN modeling improvement based on actual 

performance data are discussed.  

 

Back-Propagation Network 
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Back-Propagation Network (BPN) is a common method for 

artificial neural networks training. BPN is a one-way 

communication multilayer feed-forward network [10]. Its layered 

structure is shown as shown in Fig. 1. Each layer consists of units 

that receive their input from units from a layer directly below and 

send their output to units in a layer directly above the unit. There are 

no connections within a layer. BPN is a neural network with three or 

more layers, including the input layer, hidden layer, and output 

layer.  

 

Data Preparation 

 

This paper uses 4 different types of network structures to create 4 

different prediction models to analyze the accuracy of the prediction 

model. 49 sections and nearly 90 data points are selected as a 

training set. Eighteen sections and nearly 90 data points are selected 

as a prediction set to validate the predictive ability of the model. 

Training set is different from those prediction set and training set 

are greater than prediction set. Faulting distribution is shown in Fig. 

2. 

 

Faulting Prediction Modeling and Analysis  

 

Faulting Prediction Model with 10 Factors 

 

Faulting Prediction Modeling 

 

 
Fig. 1. The Structure of BPN. 
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Fig. 2. Faulting Distribution of Training Set and Prediction Set. 

 

 
Fig. 3. The Relationship Between Measured and Predicted Values of 

a 10-factor Model. 

 

The number of the input and output layers of BPN is determined by 

the number of dimensions of the input and output vectors. The 

dimension of the input vector is the number of factors. Previous 

study shows that road age, cumulative axle load, dowel, base type, 

pavement thickness, joint spacing, drainage system, shoulder type, 

the average annual rainfall and freeze-thaw cycles are important 

factors for faulting [11]. So this paper selects six design features: 

dowel, base type, pavement thickness, joint spacing, drainage 

system, shoulder type. The average annual rainfall and freeze-thaw 

cycles are selected as two important environmental factors. Road 

age and cumulative axle load are important factors affecting faulting 

and even sections of the performance, should be considered. By 

considering the various factors affecting roadways, the prediction 

model is established that considers 10 factors: road age, cumulative 

axle load, dowel, base type, pavement thickness, drainage system, 

joint spacing, shoulder type, freeze-thaw cycles, and average annual 

rainfall. There are 10 neurons in the input layer.  

Because the data are normalized, the data are between [0, 1]. So, 

the Tansig, which is S-type tangent function, can be used in transfer 

function of the neurons in the output layer and the hidden layer. The 

function Traindx is the gradient descent method, and its rate is 

adaptive because it has good adaptability. So, the Traindx is 

selected as the training function. When the number of the hidden 

layer of network design is based on the data set is 13 and combined 

with the empirical formula of the calculation of the number of 

hidden layer neurons, the predictive ability of the network achieves 

the best results. In summary, the BPN of cement concrete pavement 

faulting prediction is a network structure containing 10 inputs, 1 

output, and 13 neurons in the hidden layer. 

 

Analysis of Results 

 

The mean standard error of estimate between the predicted and 

measured values is 0.97 for the prediction model, which considers 

10 factors. As shown in Fig. 3, there are two situations. One is the 

points distribute around the bisector and another is the points 

deviate from the bisector. The deviation points are fitted with linear 

function, as presented in the solid red line and these data points have 

a value of greater than 3 mm. That is to say, when the faulting value 

is greater than 3 mm, the predicted value, the predicted value is only 

about 52% of the measured value, and the prediction is poor. When 

the faulting value is less than 3 mm, the prediction of the model is 

good, and the distribution of the corresponding point of predicted 

and measured values are located near the bisector.  

In order to analyze the effect of the model predictions, the 

relationship between the measured values and the predictive value 

with CESAL is analyzed by considering the dowel or no-dowel 

section. As shown in Fig. 4, the pavement faulting prediction for 

dowel sections is relatively good, even CESAL is 30,000,000, the 

predicted and measured values are more consistent. But the 

prediction of no-dowel sections is relatively poor. The predicted 

values of sections are smaller than the measured values.  

Especially when faulting value is larger than 3mm, the predicted 

value is much smaller than the measured value. This is due to the 

number of samples greater than 3mm, which is relatively small in 

the training data as shown in Fig. 2. The number of these samples is 

only 15.4% of the total sample, and only 33 samples are used for 

training. So, the distribution of different samples may affect the 

predictive ability of the BPN model. 

 

Faulting Prediction Model with 8 Factors 

 

Faulting Prediction Modeling 

 

The paper selects 4 design features factors which have a strong 

influence: dowel, base type, pavement thickness, and drainage. Also, 

the average annual rainfall and freeze-thaw cycles are selected as 

two important environmental factors. Road age and cumulative axle 

load, which are important factors affecting faulting, should be 

considered. By considering the various factors affecting road, the 

prediction model is established using 8 factors related to road age, 

cumulative axle load, dowel, base course type, pavement thickness, 

drainage system, freeze-thaw cycles, and the average annual rainfall. 

There are 8 neurons in the input layer.  

Combined with the empirical formula of the calculation of the 

number of hidden layer neurons, when the number of hidden layer 

of network design based on the data set is 8, the predictive ability of 

the network has the best results. In summary, the BPN of cement 
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Fig. 4. The Relationship of the Measured and Predicted Values with the Cumulative Axle Load in a 10-factor Model. 

 

 
Fig. 5. The Relationship Between the Measured and Predicted 

Values of a Model with 8 Factors  

 

concrete pavement faulting prediction is a network structure 

containing 8 inputs, 1 output, and 14 neurons in the hidden layer.  

 

Analysis of Results 

 

The mean standard error of estimate between the predicted and 

measured values is 0.99 for the prediction model considering 8 

factors. Fig. 5 shows similar law as Fig. 3. The deviation points are 

fitted with linear function. It is shown that the predicted value is 

only about 46% of the measured value. The deviation distribution 

with 8-factors model is a little greater than 10-factors model. As 

shown in Fig. 6, the pavement faulting prediction for dowel sections 

is good, and the predicted and measured values for dowel sections 

are more consistent. The prediction for no-dowel sections is 

relatively poor. Especially, the faulting value is larger than 3mm; 

the predicted value is much smaller than the measured value. The 

law of predicted results of model with 10 and 8 factors is 

substantially the same, and the predictive ability of the model with 

10 factors is a little better than the model with 8 factors.  

 

Faulting Prediction Model with 6 Factors 

 

Faulting Prediction Modeling 

 

A prediction model considering 6 factors (road age, cumulative axle 

load, dowel, base type, pavement thickness, and the average annual 

rainfall) is established. So there are 6 neurons in the input layer.  

When the number of the hidden layers of network design is based 

on the data set of 12, the predictive ability of the network achieves 

the best results. In summary, the BPN of cement concrete pavement 

faulting prediction is a network structure containing 6 inputs, 1 

output, and 12 neurons in the hidden layer. 

 

Analysis of Results 

 

The mean standard error of estimate between the predicted and 

measured values is 1.16 in the prediction model with 6 factors. As 

shown in Fig. 7, when the faulting value is smaller than 1mm, the 
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Fig. 6. The Relationship of the Measured Values, the Predicted Values, and the Cumulative Axle Load of a Model with 8 Factors. 

 

 
Fig. 7. The Relationship Between the Measured and Predicted 

Values of a Model with 6 Factors. 

 

prediction ability is good. However, the distributions of the 

corresponding points of others are not located near the bisector. 

There are two kinds of points deviated from the bisector. These two 

kinds of deviation points are then fitted with a linear function. One 

shows that the predicted value is only about 0.41 of the measured 

value. The other shows that the predicted value is about 161% of the 

measured value. Only a few points distribute around the bisector. To 

analyze the effect of the model predictions, the relationship between 

the measured and predictive values with the cumulative axle load is 

analyzed considering the dowel and no-dowel sections. As shown in 

Fig. 8, the pavement faulting prediction for no-dowel sections is 

poor: the predicted and measured values are not consistent. The 

prediction values for most sections are much smaller. And for dowel 

sections, when CESAL is more than 10,000,000, this model cannot 

predict correctly. It is shown that the choosing factors affect the 

prediction capability. 

 

Faulting Prediction Model with 4 Factors 

 

Faulting Prediction Modeling 

 

A prediction model considering 4 factors (cumulative axle load, 

dowel, base type, and pavement thickness) is established. There are 

4 neurons in the input layer.  

When the number of hidden layer of network design based on the 

data set is 6, the predictive ability of the network achieves the best 

results. In summary, the BPN of cement concrete pavement faulting 

prediction is a network structure containing 4 inputs, 1 output, and 6 

neurons in the hidden layer. 

 

Analysis of Results 

 

The mean standard error of estimate between the predicted and 

measured values is 1.31 in a prediction model with 4 factors. As 

shown in Fig. 9, the distribution of the corresponding points of all 

predicted and measured values are not located near the bisector, and 

the distribution is discrete. As shown in Fig. 10, the pavement 

faulting prediction for dowel and no dowel sections are both poor. 
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Fig. 8. The Relationship of the Measured Values, the Predicted Values, and the Cumulative Axle Load of a Model with 6 Factors. 

 

 
Fig. 9. The Relationship Between the Measured and Predicted 

Values of a Model with 4 Factors. 

 

The development of prediction values with an increasing cumulative 

axle load is not obvious. It shows that the predictive ability of the 

modeling with fewer factors is poorer. It is concluded that the 

number of factors has a greater impact on faulting prediction 

modeling. 

 

Discussion  

 

In order to study the impact of the different factors for modeling, the 

mean standard error of estimate of the predicted and measured 

values of the 4 prediction models are compared. As shown in Fig. 

11, the predictive ability of 10-factor model is a little better than the 

8-factor model; the mean standard error of estimate of the predicted 

and measured values is 0.97 and 0.99, respectively. The accuracy 

does not improve obviously. In Table 1, it is found that joint spacing 

and shoulder type are not included in the 8-factor model. That is to 

say, if the data is limited, these two design features may not be 

included. It is also found that joint spacing and shoulder type, are 

not important as other factors. 

The predictive ability of the 6-factor model is not as good as the 

10-factor model and the 8-factor model. In Table 1, it is found that 

drainage type and freeze-thaw cycle times are considered in the 

8-factor model but not in the 6-factor model. It is concluded that 

drainage type and freeze-thaw cycle times are important for the 

faulting. It also shows that reducing the number of factors in the 

model will affect the prediction accuracy.  

As shown in Fig. 11, the predictive ability of the 4-factor model 

is worse than the 6-factor model. Table 1 shows age and average 

annual rainfall are not considered in the 4-factor model but are 

considered in the 6-factor model. As mentioned, the prediction 

model based on 4 factors has difficulty predicting the faulting 

development with CESAL. It may be because the 4-factor model 

does not consider age or any environmental factors. 

 

Conclusions 

 

This paper presents a successful use of the back-propagation neural 

networks to model the complex relationship between pavement age 
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Fig. 10. The Relationship of the Measured Values, the Predicted Values, and the Cumulative Axle Load of a Model with 4 Factors. 

 

 
Fig. 11. Comparison of the Different Models. 

 

and parameters related to base layer conditions and joint faulting in 

cement concrete pavements. In the back-propagation neural network 

modeling, four types of models, including 10-factor model, 8-factor 

model, 6-factor model and 4-factor model, are proposed in this 

paper which shows the predictive ability of 10-factor model is the 

best, but just a little better than 8-factor model. Since the 8-factor 

model save more computer time and needs fewer inputs, it is 

concluded that 8-factor model is the most effective and these factors 

are CESAL, age, dowel, base type, thickness, drainage, average 

annual rainfall, freeze-thaw cycle times. But all these models do not 

perform well for no-dowel section, further study is suggested to 

develop model with dowel sections and no-dowel sections, 

respectively. 

Table 1. Factors Considered in Different Neural Network Models. 
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