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─────────────────────────────────────────────────────── 

Abstract: Alberta Transportation conducts annual automated International Roughness Index (IRI) surveys on the core highway network 

in the province. The measures are used to rate the physical condition of each pavement section in the Pavement Management System 

(PMS) to establish rehabilitation strategies for the year. Future rehabilitation needs are predicted based on highway sections’ age, using 

the Highway Pavement Management Application (HPMA) sigmoidal IRI function, which does not consider the effect of climatic and 

pavement distresses or structural design. IRI prediction models incorporated in the Mechanistic Empirical Pavement Design Guide 

(MEPDG) and Highway Development and Management (HDM) require comprehensive and detailed distress records. Such data records 

are not fully available for Alberta yet, making it difficult to calibrate these models for local conditions. The present study focuses on 

identifying the significant climatic, structural and distress-related variables to IRI for Alberta’s highway network. The data available in 

Alberta’s PMS was used to develop two new IRI prediction models for New, and Straight Overlaid Asphalt Concrete (AC) sections with 

Granular Base Course (GBC). Regression analysis revealed that variables such as age, traffic, subgrade fines, rutting, transverse and 

miscellaneous cracking are most significant to IRI for new AC sections. Further, IRI for overlaid AC sections was found to be dependent 

upon age, traffic, Freezing Index (FI), GBC and AC overlay thickness, subgrade soil plasticity and rutting. The model for new AC 

sections was able to predict IRI for the General Pavement Sections (GPS)-1 of the Long Term Pavement Performance (LTPP) in Alberta, 

Manitoba and Saskatchewan. 

 

DOI: 10.6135/ijprt.org.tw/2013.6(6).714  

Key words: Climate; Pavement distress; Roughness. 

─────────────────────────────────────────────────────── 

 
Introduction 

12
 

 

Pavement surface roughness is one of the most commonly used 

measures to gage road users’ level of satisfaction, while at the same 

time provides an assessment of roadway conditions to road owners. 

Many highway agencies, including Alberta Transportation, conduct 

automated and regular roughness measurements, mainly in terms of 

International Roughness Index (IRI). Measurements are made to 

assess the overall physical conditions of the highway network for 

preservation and rehabilitation purposes. In doing so, the highway 

sections are categorized into poor, fair and good condition groups, 

based on predetermined criteria for roughness adequacy. Poor and 

fair groups are considered in need of repair and rehabilitation 

immediately or in the near future, respectively [1, 2]. Alberta 

Transportation uses Highway Pavement Management Application 

(HPMA) to rank and plan corrective and preventative maintenance 

and rehabilitation strategies for the province [4]. HPMA, developed 

by Stantec Consulting Services, includes functions based on detailed 

highway database including geometry, pavement structure and 

performance data such as IRI. HPMA utilizes a default sigmoidal 

IRI prediction model (Eq. (1)) to predict IRI, and thus future 

preservation activities. 
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where, IRI0 is IRI at age zero, Age is the last rehabilitation or 

construction activity life in years and A, B, and C are coefficients 

defined based on treatment type [5]. The IRI model in Eq. (1) is 

utilized for pavement sections characterized within the same 

performance class in terms of thickness, environment, traffic, last 

rehabilitation and subgrade properties [6, 7]. However, local 

calibration based on IRI data has shown the need to refine and 

replace the HPMA’s default IRI prediction model with new IRI 

models [5]. A similar approach as the one incorporated in HPMA 

was applied by El-Assaly et al. in 2002, where relations were 

developed to predict IRI progression as a function of age for 

different classes of road in Alberta Transportation’s Pavement 

Management System (PMS) [8]. 

On the other hand, several evaluation studies conducted in recent 

years on roughness development for the Long-Term Pavement 

Performance (LTPP) sections revealed that, in addition to structural 

age, IRI is correlated to other variables. The evaluation of the 

General Pavement Studies (GPS)-1 (Asphalt Concrete [AC] over 

Granular Base Course [GBC]) revealed that base material passing 

Sieve No. 200, Freezing Index (FI), and Plasticity Index (PI) for the 

subgrade have a strong effect on roughness for all climatic zones [9]. 

A study on the Specific Pavement Studies (SPS)-1 (new AC 

pavements) in Iowa demonstrated that IRI development correlates 

with transverse and longitudinal cracking in the wheelpath. The 

same study revealed that, for SPS-5 (overlaid AC sections) IRI 

progression depends on the pre-overlay IRI for the section, as well 

as the overlay thickness [10]. 
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Table 1. Summary of the Variables in the MEPDG and HDM IRI Prediction Models. 

Category 
Variables in MEPDG Models Variables in HDM Model 

New AC (CSB) New AC (GBC) Overlaid (GBC) New & Overlaid (Any Base) 

Structure 

IRI0 IRI0 IRI0 IRI0 

 - - 
Pavement Modified Structural Number 

(SNC) Reduced for Cracks in AC 

 - - Last AC Layer Thickness 

 Age Age Age Since Last Major Treatment 

 - - Thickness of old AC Layers 

Subgrade 

 % Passing Sieve No. 200 - - 

 % Passing 0.02-mm Sieve - - 

 PI - - 

Climate 

 FI 

- 
Climatic Factor Based on Ambient Temp. 

& Moisture Index 
 SD of Monthly Rainfall 

 Average Annual Rainfall 

Traffic  - - Annual ESAL 

Distresses 

Trans. Crack Trans. Crack 
Trans. Crack Spacing 

Structural cracking 

Fatigue Crack Fatigue Crack Raveling 

Block Crack Block Crack Patches Area Delamination 

None Wheelpath Long. 

Cracks 

Sealed None wheelpath 

Long. Cracks 

Sealed Wheelpath 

long. Cracks 
Potholing 

SD of Rut Depth COV of Rut Depth Pothole Area SD of Rut Depth 

 

The new Mechanistic Empirical Pavement Design Guide (MEPDG) 

is embedded with individual IRI models for 1) new AC pavements 

with bound base materials, Cement Stabilized Base (CSB), 2) new 

AC sections with unbound GBC, and 3) overlaid pavement sections 

with GBC. The models, developed based on the data from the LTPP 

GPS-1 to 7, take into account the effect of different groups of 

variables, including structural design and properties, climate, 

distresses, and subgrade properties. A summary of the input 

variables in each category included in the three models is listed in 

Table 1. As seen in Table 1 the MEPDG IRI prediction models for 

new AC sections with CSB and overlays include only IRI0, age and 

distresses, while the model for new sections with GBC includes the 

effect of climate through Standard Deviation (SD) of monthly 

rainfall, average annual rainfall and FI. The effect of subgrade type 

and properties on IRI is also considered in the model through 

gradation (percent fines) and PI. Distresses considered in the model 

for new AC sections are total area of all-severity fatigue and block 

cracking, Coefficient of Variation (COV) of rutting, total length of 

all-severity transverse cracking and total length of all-severity 

non-wheelpath longitudinal cracking [11]. 

Another IRI model that has gained popularity in several countries 

over the past few decades is the Highway Development and 

Management (HDM) model. Table 1 includes a list of the variables 

in different categories included in the HDM model. The HDM 

model can be used to predict pavement IRI progression by 

considering the effects of pavement structure, climatic and 

environmental conditions, traffic loading and different types of 

distresses [12]. 

Available IRI prediction models (Table 1) require an extensive 

record of distresses collected for the LTPP test sections. MEPDG 

models, calibration and implementation by highway agencies 

require extensive and regular distress survey records, collected in 

accordance with the LTPP Distress Manual along with records of 

many other variables such as climatic indices, material and 

structural properties [13]. While the need for comprehensive distress 

surveys and other pavement data records to fulfill the MEPDG 

implementation should be considered by highway agencies, the 

available PMS database is invaluable and can be investigated to 

identify relations between different variables and pavement 

performance. The present study will follow a similar methodology 

to that used in the development of the MEPDG and HDM models 

and will focus on identifying significant climatic, structural and 

distress-related variables to IRI for new and straight overlaid AC 

sections with GBC in Alberta. As a result of this study, the statistical 

significance of various influential variables on IRI, as well as their 

linear correlation with IRI, will be established for Alberta’s highway 

network. This study can help Alberta Transportation and other 

highway agencies understand the pavement performance in cold 

climatic conditions, using current construction practices and 

materials. Further, the study can be useful in predicting future 

rehabilitation needs for exiting sections and also improve the design 

and construction practice for new sections in the future. The 

accuracy of the model developed for new AC sections will be 

evaluated using the data available for the LTPP sections in the three 

neighboring provinces of Alberta, Manitoba and Saskatchewan in 

western Canada. 

 

General Description of Alberta Transportation’s 

PMS 

 

Since the late 1990s, Alberta Transportation uses a laser-based 

system to measure IRI and rutting at 19-mm intervals. Later, the 

19-mm interval data for the wheelpath is averaged over 50-m 

intervals, which is averaged over the entire length for each control 

section and reported annually in Alberta Transportation’s PMS. In 

addition to the annual IRI measurements, the information available 
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in the database for each control section includes: the highway name 

(number), control section number, start and end kilometers, length 

and width, subgrade soil type, base layer material’s type, date of 

construction and thickness, last surface activity’s type, date of 

construction and thickness, age since last surface activity, Average 

Annual Daily Traffic (AADT) and several distress records. 

Alberta Transportation’s PMS report in 2011 (the focus of the 

present study) contains a total number of 10,384 control sections, 

resulting in 31,333 km of highway. Of these, only 13 sections are 

Jointed Plain Concrete Pavements (JPCP), and the remaining are 

AC pavements. AC road sections in the database are in three 

categories, new (original), milled and overlaid, and straight overlaid 

sections. GBC is the most common base material used in Alberta, 

covering 76 percent of the entire sections in the network. Only 

seven and twelve percent of all the sections are comprised of 

Asphalt Stabilized Base (ASB) and Cement Stabilized Base (CSB), 

respectively. The remaining five percent include composite 

pavement sections and JPCP sections overlaid with AC. Also note 

that, the majority of the pavement sections (67 percent) include a 

clay-type subgrade soil. 

Distress records available in the PMS for each control section 

include medium- and high-severity transverse cracking, longitudinal 

cracking in the wheelpath, miscellaneous cracking, and rut depth. 

Transverse cracking and miscellaneous cracking are measured 

manually and reported in the PMS as percentage of cracked area. 

For transverse cracking, the crack length is multiplied by a factor of 

0.3 to account for the affected pavement area. This value is then 

divided by the total pavement area to arrive at percent cracked area. 

Longitudinal cracks, on the other hand, are reported as percent 

length cracked, since they are parallel to the direction of traffic [14]. 

The rut depth records in the PMS represent the 80th percentile rut 

depth in the wheelpath for each control section [15]. 

 

Database Preparation 

 

Based on the number of control sections available in the PMS, two 

pavement groups were included in the analysis: 1) New; and 2) 

Straight Overlaid AC pavement sections with GBC. The number of 

new AC sections with a bound base material available in the PMS is 

limited, as are the milled-overlaid sections. Further, as these control 

sections are mostly young and do not cover a wide range of IRI, 

these types of pavements were not included in the study. To be able 

to identify the potential influential variables to IRI, a comprehensive 

review of existing roughness models was conducted. The MEPDG 

and HDM models, the two widely used and most inclusive models 

(as previously discussed), were mainly used in selecting the 

variables. 

According to Table 1 both the MEPDG and HDM procedures 

comprise several input variables to predict pavement IRI, some of 

which are not readily available in Alberta’s PMS and need to be 

defined based on available resources. According to Table 1 IRI0 is 

part of both the MEPDG and HDM models. The effect of this 

variable was considered in the analysis by fitting an intercept 

through the entire IRI measurements available in the PMS, which 

includes a total of 40, one-year-old sections. The next variable 

within the structure category is structural age, which is common 

among all the models in Table 1. This variable is readily available in 

Alberta Transportation’s PMS for every inventory. As opposed to 

the MEPDG, the HDM model includes other structural variables, 

such as pavement modified structural number (SNC) and old and 

new AC layer thicknesses. The latter variables are readily available 

in Alberta Transportation’s PMS and were included in the analysis. 

For the subgrade category, the MEPDG model for new sections with 

GBC includes such variables as gradation and plasticity, while the 

HDM model includes no variables. Alberta Transportation’s PMS 

includes the soil type in the form of the Unified Soil Classification 

(USC). In an attempt to include subgrade properties in the analysis, 

the default values available in the MEPDG Version 1.1 were used to 

define P200 and PI for each soil classification in the PMS. 

Both design procedures in Table 1 consider the effect of climate 

and site conditions on IRI. The MEPDG model for original sections 

with GBC comprises the three environmental factors of standard 

deviation of monthly rainfall (SD RAIN), mean annual rainfall 

(MAP), and FI, while the HDM model recommends typical values 

for the environmental coefficient (m) for various ambient 

temperature and thornthwaite moisture index. Alberta 

Transportation’s PMS does not include any climatic parameter; 

hence, in an attempt to establish FI, MAP and SD RAIN for each 

inventory section in the PMS, the climate program, ClimateAB 

(developed at the University of Alberta) was implemented. The 

program uses the historical data (minimum of 30 years) from 

weather stations across western Canada to establish major climatic 

indices for any geographical location in Alberta [16]. The one 

obstacle toward implementing the program for Alberta’s network 

was missing coordinates for each inventory in the PMS. Only the 

coordinates for the start and end of each highway were obtainable 

from Alberta Transportation. Therefore, the climatic parameters 

could only be established for approximately 22 percent of all control 

sections. 

As seen in Table 1 the HDM model considers the effect of traffic 

on IRI using ESAL, while none of the MEPDG models include any 

traffic-related parameters. Traffic data for each control segment in 

Alberta Transportation’s PMS is available in the form of AADT and 

was used in the analysis. For the distress category, the MEPDG 

models include transverse, fatigue and block cracking, together with 

rutting, potholes and patches. The HDM model comprises structural 

cracking, delamination, ravelling and rutting. A record of distresses 

is available in the PMS for longitudinal, transverse and 

miscellaneous cracking, together with rutting, as discussed in the 

previous section. 

 

Model Development 

 

The data readily available in Alberta Transportation’s PMS along 

with the data added to the database as described above was used to 

identify the statistically significant variables to IRI for original AC 

sections with GBC, as well as overlaid AC sections with GBC. A list 

of the variables included in the analysis includes: 

 Pavement structure: 

 Structural age 

 AC layer or AC overlay thickness (AC-mm) 

 Base layer thickness (Base-mm) 

 AADT 

 Subgrade properties: 
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 P200 

 PI 

 Climate: 

 FI 

 Mean Annual Precipitation (MAP) 

 Standard Deviation of mean monthly rainfall (SD RAIN) 

 Distresses: 

 80th percentile rut depth (Rutting) 

 Percent area with transverse cracking (Trans. Crk) 

 Percent length of wheelpath with longitudinal cracking (Long. 

Crk) 

 Percent area with miscellaneous crack (Misc. Crk) 

Prior to the statistical analysis, the database for each pavement 

group (new AC and the straight overlaid sections) was carefully 

screened and examined for missing and erroneous data records. A 

total of 126 control sections in the PMS included unknown or 

missing subgrade soil types, thus were excluded from the analysis. 

Outliers of the data available for each variable were identified using 

the inner and outer fences from the relations below [17]. Where, 

observations falling between a pair of inner or outer fence are 

possible outliers, while observations lying outside the outer fence 

are probable outliers. 

Inner fence: Upper: )(5.11 IQRQ   

        Lower: )(5.13 IQRQ   

Outer fence: Upper: )(0.31 IQRQ   

        Lower: )(0.33 IQRQ   

Q1 and Q3 in the above relations represent the first and third 

quartile of the observations, respectively and IQR is the interquartile 

range and is equal to Q3 - Q1. The inner and outer fences were 

established for each variable within each pavement group. The 

identified probable outliers were carefully examined for errors. For 

new AC sections with GBC, a total of 1,494 observations are 

available in the database. Variables such as AADT, transverse, and 

miscellaneous cracking did show values beyond the upper outer 

fence. Each of the probable outliers was examined; however, none 

of them showed an apparent mistake in data collection/recording, 

hence no elimination was made. A total of 14 observations showed a 

value of zero for IRI, thereby were excluded from the analysis, 

resulting in a total of 1,479 observations for new AC sections with 

GBC. For straight overlaid sections a total of 3,249 sections were 

available, of which seven sections were excluded, due to a zero IRI. 

 

IRI Model for New AC Sections 

 

As mentioned previously subsequent to screening the data for 

outliers and eliminating the observations with IRI of zero, a total 

number of 1,479 observations became available for new pavement 

sections with GBC. Of these observations, climatic variables were 

able to be assigned to 404 sections. A summary of all the variables 

used in the future statistical analysis together with their basic 

statistics is provided in Table 2. 

A preliminary regression analysis was performed on the 404 

observations to establish the significance of the climatic variables to 

IRI. The climatic variables showed P-values greater than α = 0.05, 

implying their insignificance to IRI. Further, the Pearson correlation 

between IRI and climatic variables, including FI, MAP and SD 

Table 2. Basic Statistics for the Variables Used in IRI Regression 

for New AC Sections with GBC. 

No. Variable 
Range 

Mean SD 
Min. Max. 

1 AADT 130 45,850 3,726 5,676 

2 Age (Years) 1 47 18.65 7.8 

3 
Misc. crack (% 

Area) 
0 91 2.58 7.6 

4 
Trans. crack (% 

Area) 
0 2.4 0.27 0.5 

5 Long. Crack (%) 0 100 18.3 0.6 

6 Rutting (mm) 1 15 4.71 2.5 

7 
AC Layer 

Thickness (mm) 
60 360 146.4 36.9 

8 
GBC Thickness 

(mm) 
50 500 259.3 77.6 

9 FI (˚C-day) 710 2,546 1422.7 340.6 

10 MAP (mm) 284 851 456 82.7 

11 SD Rain (mm) 11.7 36.2 23.3 5.6 

12 P200 (%) 3 75 69.5 16.2 

13 PI 0 35 25 6 

 

RAIN, was found to be 0.02, 0.02 and 0.05, all with P-values 

greater than 0.05.  Based on these observations it was concluded 

that the climatic variables do not affect IRI for new AC sections in 

Alberta significantly. Hence, another attempt was made to develop 

an IRI model for the entire observations (a total of 1,479). 

A split data method was used to validate the developed relation 

between IRI and the significant variables (20). Hence, 1,000 of the 

observations were used for model development (derivation data) 

and the remaining 479 were randomly screened and held out for 

validation. The most significant variables showing P-value < 0.05 

were identified through a regression analysis. Equation 2 shows the 

final IRI prediction model. As seen in Equation 2, the IRI model has 

an intercept of 0.34 mm/m, which reflects the effect of IRI0. Further, 

IRI has a direct relationship to a combination of age and AADT, 

percent fines in the subgrade and distresses such as rut depth, 

transverse and miscellaneous cracking. This agrees with the findings 

of Perera et al. (2002) that IRI measurements made by a profiler 

show jumps at the location of deep transverse cracks and ruts in the 

pavement (9). Using the average values from Table 2 for AADT and 

P200 and zero for all other variables IRI0 is obtained at 0.99 m/km, 

which very well agrees with typical IRI0 of new AC sections in 

Alberta. 

Rutting*07.0Crk.Misc*013.0Crk.Trans*088.0

200P*006.0)AADT(Log*e059.034.0IRI 25/Age




      (2) 

Residuals, i.e. the difference between the predicted and observed 

IRI are plotted against the predicted (fitted) IRI in Fig. 1.  

According to Fig. 1 the residuals vary mainly between -1 and 1 

m/km and expand in a horizontal band around the zero line. No 

specific pattern is observed in the distribution of the residuals, 

indicating a good fit for a linear model. 

The regression model (Eq. (2)) has a coefficient of determination 

(R2) of 39 percent and a standard error of estimate 
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Fig. 1. Graph of Residuals versus Predicted IRI for New AC 

Pavements with GBC. 

 

 
Fig. 2. Predicted IRI versus Observed IRI for 1,000 New AC 

Pavements with GBC. 

 

(SEE) of 0.420 m/km. Fig. 2 provides a graphical presentation of 

the observed versus predicted IRI with respect to the line of equality. 

Overall, the model shows acceptable statistics and is able to 

reasonably predict IRI for the pavement sections in Alberta. The 

reason for the relatively low R2 achieved for the model could be the 

possible inaccuracies in distress survey records, especially for the 

miscellaneous cracking category since this group includes a variety 

of crack types. The developed model was validated in the next 

section using the split data method. 

The developed regression model (Eq. (2)) was used to predict IRI 

for the validation observations. The adjusted coefficient of 

determination (R2
adj) was used for validation. Since R2

adj for the 

validation model (𝑅̂𝑎𝑑𝑗
2 ) is typically smaller than R2

adj for the 

derivation model, it is critical to establish a valid criteria for the 

allowable drop in R2
adj. The following criterion from Sobol (1991) 

was used to establish the allowable reduction in the R2
adj (18). 

)R1)(
N

1KN
)(

1KN

1N
(1R̂ 2

adj
2
c 






             (3) 

Table 3. Basic Statistics for the Variables Used in the Analysis for 

Straight Overlays. 

No. Variable 
Range 

Mean SD 
Min. Max. 

1 AADT 100 66,090 5,286 8,045 

2 Age (Years) 1 39 11.2 6.6 

3 Misc. crack 

(%Area) 
0 96 1.82 3.7 

4 Trans. crack 

(%Area) 
0 4.8 0.55 0.9 

5 Long. crack (%) 0 100 21.6 35.7 

6 Rutting (mm) 1 21 4.1 2.5 

7 GBC Thickness 

(mm) 
50 450 243.3 66.2 

8 AC Overlay 

Thickness (mm) 
135 470 263.45 66.6 

9 MAP (mm) 326 882 452.7 65.9 

10 FI (˚C-day) 697 2772 1519.6 345.7 

11 SD Rain (mm) 14.5 34.9 23.5 5 

12 P200 3 75 72 11 

13 PI 0 35 26 6.5 

 

Where, 
2
cR̂  is the acceptable drop in R2

adj, N is the number of 

validation observations, and K is the number of variables including 

the intercept. Using 479, for N, 6 for K, and 39 percent for R2
adj, 𝑅̂𝐶

2 

was established at 35 percent. 𝑅̂𝑎𝑑𝑗
2  was established at 37 percent 

for the validation observations, which is within the allowable drop 

limit for R2
adj, implying that the derivation model meets the 

validation criterion. 

 

IRI Model for Straight AC Overlay 

 

A total number of 621 overlaid control sections with GBC with 

climatic variables were available in the PMS. A total of 501 

observations were used for model derivation and the remaining 120 

were randomly selected and held out for validation. Table 3 shows 

the range of variation for all of the variables used in the analysis, 

together with their mean and standard deviation. 

The best fit model is presented below in Equation 4. According to 

Equation 4, IRI increases with an increase in age, rut depth, FI and 

PI, while thicker overlay and base layers result in less IRI. Also, 

when age and rut depth are considered as zero, and average values 

of 5,286, 1,416 ˚C-day, 243 mm and 263 mm are used for AADT, FI, 

overlay, and base thickness, respectively, IRI0 of 0.92 m/km is 

obtained using Eq. (4). This observation implies that although no 

milling is performed prior to overlay, a low IRI0 of 0.92 m/km is 

still attained for the overlaid sections. 

PI*01.0Rutting*074.0)m(AC*5.1)m(Base*55.1

)
1000

FI(*2.0AADT*e*099.0.786.0IRI 25/Age




 (4) 

Study of the residuals with respect to the predicted IRI showed 

that the residuals scatter around the zero line without a specific 

pattern, meaning that the assumption of normal variances is valid. 

The relationship between the measured and predicted IRI is shown 

in Fig. 3. The model has a R2 of 39 percent and SSE of 0.452 m/km.  
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Fig. 3. Observed Versus Predicted IRI for Straight Overlays 

(Derivation Data). 

 

 
Fig. 4. Predicted and Observed IRI for Straight Overlays as a 

Function of AADT. 

 

It is noted in Fig. 3 that the prediction model underestimates IRI for 

mostly all the sections with IRI greater than 2.5 m/km. This 

behavior is better noted in Fig. 4, where both the predicted and 

observed IRI values are presented with respect to AADT. Alberta 

Transportation’s trigger values for rehabilitation are also presented 

in FIGURE 4 for different traffic levels. It is noted in Fig. 4 that the 

majority of the sections whose IRI is underestimated by the model 

are those with IRI values beyond the trigger limits. 

The model in Equation 3 was used to predict IRI for the 

validation observations (120 observations total). The allowable drop 

in the R2
adj for the validation model (𝑅̂𝑐

2) was established at 25 

percent using Equation 3. Additionally, 𝑅̂𝑎𝑑𝑗
2  for the validation 

model was established at 28 percent in comparison to R2 of 39 

percent for the derivation model, which is well within the allowable 

limit. The scatter of the predicted versus observed IRI around the 

one-to-one line is presented in Fig. 5 for the validation observations. 

 

Model Validation using LTPP Data  
 

The model developed for new AC pavements with GBC was 

validated using the data from eight GPS-1 LTPP sections with 

similar climatic conditions, located in western Canada. The eight  

 
Fig. 5. Observed Versus Predicted IRI for Straight Overlays 

(Validation Data). 

 

 
Fig. 6. Observed Versus Predicted IRI for LTPP GPS-1 in Western 

Canada. 

 

sections included in the analysis are Sections 1803 and 1804 in 

Alberta, 1801, 6450, 6451 in Manitoba, and 645 and 6410 in 

Saskatchewan. 

The data required to define each variable in the model, including 

transverse cracking, rutting depth, AADT, base thickness and P200 

for the subgrade, were collected for each section from the LTPP 

online database in June 2012. Several simplifying assumptions for 

each variable became necessary, depending on the available data. 

For instance, the yearly traffic data available for each section did not 

match with the years in which the distress and IRI records were 

available. To overcome this limitation, the available traffic data 

were used to establish the average annual growth rate and 

consequently predict AADT for the required years. In addition, the 

months when the IRI measurements were made for each section did 

not match with the months when the rutting measurements and 

transverse cracking surveys were made. Hence, for each section and 

in each year the distress data which corresponded to the months in a 

similar season were used together, resulting in a total of 47 

observations. The scatter of the predicted versus the observed IRI 

around the one-to-one line is presented in Fig. 6. As seen in Fig. 6, 

the model is very well able to predict IRI for the LTPP with a R2 of 

39 percent (R2
adj.= 27 percent). 
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Conclusions 

 

The data available in Alberta Transportation’s Pavement 

Management System (PMS) was utilized in this study to develop 

two IRI prediction models for Alberta’s highway network. The 

regression models developed were for: 1) New and 2) Straight 

Overlaid Asphalt Concrete (AC) sections with Granular Base 

Course (GBS). A total of 1,000 and 621 highway sections were used 

to develop the two models, respectively and another 479 and 120 

highway sections were used to validate each model, respectively. 

Regression analysis revealed that, for the new AC sections in 

Alberta, age, Annual Average Daily Traffic (AADT), subgrade fines, 

rutting, transverse and miscellaneous cracking are linearly 

correlated with IRI. Variables such as age, AADT, FI, PI, rutting, 

base and overlay thickness were found to be significantly correlated 

with IRI for the overlaid sections. The models showed reasonable 

statistics and can be used to predict IRI for the pavement sections in 

Alberta. The models’ predictions agreed best with IRI 

measurements for those sections with IRI values lower than Alberta 

Transportation’s trigger value for rehabilitation. The accuracy of 

both models is expected to increase with more accurate records of 

various types of cracking. The model developed for the new AC 

sections provided reasonable IRI predictions for the LTPP GPS-1 

sections in western Canada. 
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