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Abstract: This research explores the utilization of an artificial neural network (ANN) in predicting the stiffness of recycled aged binders 

containing crumb rubber modifier (CRM). The data were organized into six independent variables (rotational viscosity of unaged, high 

failure temperatures of unaged and RTFO (rolling thin film oven) residual, and large molecular sizes of unaged, RTFO residual, and 

RTFO+PAV (pressure aging vessel) residual) covering the binder properties and one dependent variable, the binder stiffness. The training 

and testing results showed that the model explains 0.943 of the variability in stiffness, indicating that the ANN techniques are effective in 

predicting the stiffness of recycled aged CRM binders tested in this study. 
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More than 300 million scrap tires are disposed of in the United 

States every year. Approximately 67% of these are currently utilized 

for applications such as tire-derived fuel, molded products, and 

crumb rubber [1-3]. There is an increasing interest in using crumb 

rubber modified (CRM) binders in hot mix asphalt (HMA) 

pavements in the Unites States as well as in other countries [3-5]. 

This motivation was supported by previous studies reporting that 

CRM binders can produce asphalt pavements that exhibit increased 

pavement life, decreased traffic noise, reduced maintenance costs 

and resistance to rutting and cracking [2, 6-8].  

Using CRM to modify asphalt binders in pavement engineering 

began more than four decades ago in the United States. The 

recycling of rubberized asphalt pavement is a very important issue 

because many of these pavements were constructed over 10-20 

years ago, and some of them may now be candidates for recycling. 

Research on the recycling of rubberized asphalt concrete (RAC), 

conducted primarily by some state departments of transportation 

(DOTs) [9-12], has focused on investigating the in-field paving 

properties regarding the feasibility of recycling rubber-modified 

paving materials. The majority of a limited number of studies on the 

use of reclaimed rubberized materials in recycled asphalt paving 

mixtures indicate that these reclaimed materials can be successfully 

incorporated into other bituminous paving mixes [13]. Particularly 

for long-term performance characterizations, however, it is 

important to be able to identify the stiffness properties of rubberized 

binders to predict the long-term performance of these mixtures.  

This study explores the feasibility of using a multilayer 

feed-forward artificial neural network (ANN) to predict the stiffness 

of recycled aged CRM binders. The CRM binders were artificially 

aged using rolling thin film oven (RTFO) + pressure aging oven 

(PAV) aging procedures, while the aged CRM binders were recycled 
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using two base binders. The recycled aged CRM binders were 

artificially aged using the same RTFO+PAV methods. The gel 

permeation chromatography (GPC) parameters of unaged, RTFO 

residual, and RTFO+PAV residual were evaluated, and the 

Superpave binder properties were also measured at each aging state.  

 

Materials 

 

Asphalt Binders  

 

Three performance grade (PG) 64-22 asphalt binders designated as 

A, B, and C from different crude sources were used in this study. 

Binder A was from a Venezuelan crude source, binder B was from a 

Middle Eastern source, and binder C was a mixture of several 

sources that could not be identified by the supplier. Table 1 shows 

the properties of three base binders. 

 

Crumb Rubber Modifier (CRM) 

 

The CRM produced by mechanical shredding at an ambient 

temperature was obtained from one source: -40 mesh (0.425 mm) 

and used with a gradation as shown as Fig. 1. To ensure that the 

consistency of the CRM was maintained throughout the study, only 

one batch of crumb rubber was used in this study. 

 

CRM Binder Production and Aging   
 

The CRM binder was produced in the laboratory at 177C for 30 

minutes by an open blade mixer at a blending speed of 700 rpm [14]. 

The percentage of crumb rubber added to the CRM binder was 10% 

by weight of the base binder. This mixing condition matches the 

practices used in South Carolina to produce field mixtures. The 

CRM binders were then artificially aged through a series of 

accelerated aging processes (RTFO aging for 85 minutes at 163C 

and PAV aging for 20 hours at 100C) [15].  

 

Recycling of Aged CRM Binders   
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Table 1. Properties of Three Base Binders (PG 64-22). 

Aging States Test Properties 
Binder Sources 

A B C 

Unaged Binder 

Viscosity @ 135 C (Pa-s) 0.405 0.626 0.457 

G*/sin  @ 64 C (kPa) 1.24 1.99 1.12 

Failure Temperature, C 65.8 69.7 64.9 

RTFO Aged Residual 
G*/sin  @ 64 C (kPa) 3.3 6.09 2.53 

Failure Temperature, C 67 72 65.1 

RTFO + PAV G*sin  @ 25 C (kPa) 2970 2420 1704 

Aged Residual Stiffness @ -12 C (MPa) 183 129 117 

 

 
Fig. 1. Gradation of CRM Used in this Study. 

 

Virgin CRM binders produced using the base binders of PG 64-22 

were used for the recycling of 0% and 15% recycled binders. With 

respect to 25% and 35% recycled binders, the base binders of PG 

58-22 were utilized to produce virgin CRM binders for the recycling. 

The recycled aged CRM binders were then artificially aged through 

RTFO and PAV processes. In total, thirty-six CRM binders (3 binder 

sources * 4 recycled binder percentages: 0%, 15%, 25%, and 35% * 

3 aging levels: unaged, short-term aging, and long-term aging) were 

produced and evaluated during this study.  

 

Superpave Binder Tests 
 

The properties of these CRM binders were evaluated using selected 

Superpave binder test procedures including the viscosity test 

(AASHTO T 316), the bending beam rheometer (BBR) test 

(AASHTO T 313), and the dynamic shear rheometer (DSR) test 

(AASHTO T 315: with the plate gap adjusted to 2 mm). The plate 

gap adjustment was used to eliminate the influence of rubber 

particle size [16-18].  

A 10.5 g binder sample of the binders was tested with a number 

27 spindle in the rotational viscometer at 135 C. In the DSR test, 

the binders (RTFO+PAV residual) were tested using an 8 mm 

parallel plate at 25 C. The BBR test was conducted using each 

asphalt beam (125 × 6.35 × 12.7 mm) at -12 C, and creep stiffness 

(S) and creep rate (m) of the binders were measured at a loading 

time of 60 s. 

 

Gel Permeation Chromatography (GPC) 

 

Waters GPC equipment with computerized software was used for 

the chromatographic analysis of binders. A differential refractive 

index meter (Waters 410) was used as a detector. For testing the 

samples at a constant temperature, the columns were kept at 35C 

throughout the test in a column oven. The mobile phase was 

tetrahydrofuran (THF) flowing at a rate of 1 ml/min. The 

concentration rate used was 0.5% by weight of binder. This rate was 

recommended by the manufacturer of the equipment. Each GPC 

sample dissolved into THF was filtered through a 0.45m syringe 

filter prior to injection into the injection module. A 50l of 

dissolved sample was injected into the GPC injector for each test. 

Testing for each sample was repeated three times, then the average 

value of large molecular size (LMS) was reported.    

 

Artificial Neural Network (ANN) 
 

The artificial neural network (ANN) is a computational structure 

inspired by the architecture of biological neurons such as that of the 

human brain. The ANN is an interconnection of nodes, analogous to 

neurons. Each neural network has three critical components: node 

character, network topology and learning rules [19]. Node character 

determines how signals are processed by the node, such as the 

number of inputs and outputs associated with the node, the weight 

associated with each input and output, and the activation function. 

Network topology determines the ways in which nodes are 

organized and connected. Learning rules determine how the weights 

are initialized and adjusted. 

The basic model for a node in the ANN is shown in Fig. 2. Each 

node receives multiple inputs from others via connections that have 

associated weight (wi), analogous to the strength of the synapse. 

When the weighted sum of inputs exceed the threshold value of the 

node, it activates and passes the signal through a transfer function 

and sends it to neighboring nodes.  

 

Multi Layer Perceptron (MLP) 
 

The main type of ANN used in this study is referred to as a 

feed-forward network, which is called a multilayer perceptron [20]. 

The earliest type of the neural network is a single hidden-layer 
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Fig. 2. A Typical Model of a Single Node. 
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Fig. 3. Multilayer Perceptron. 

 

Fig. 4. Concept of a Back-Propagation. 

 

perceptron that can solve only linearly separable problems. The 

multiple-layer perceptron (MLP) is the most widely used neural 

network shown in Fig. 3. It has one input layer, one output layer, 

and constructed neurons, as known processing elements named as 

hidden layers. The hidden layers are placed between the input and 

output layers. The processing elements in these hidden layers allow 

the network to represent and compute more complicated 

associations between input and output patterns. Each processing 

element receives a signal from the processing elements in the 

previous layer, and each of those signals is multiplied by a separate 

weight value. The weighted inputs are summed, then passed through 

a limiting function which scales the output to a fixed range of values. 

The output of the limiter is then broadcast to all of the processing 

elements in the next layer. The network operation consists of a 

highly nonlinear functional mapping of the processing elements in 

the hidden layers between the input and output variables. 

Hecht-Nielsen proved that a MLP could implement any function 

defined over a compact subset of Euclidean space [21]. 

 

Back-Propagation Algorithm 

 

A back-propagation algorithm, also known as the generalized delta 

rule and chain rule, is the most commonly used learning rule and 

usually used in the training of MLP in areas such as speech and 

natural language processing, pattern recognition and system 

modeling. In the algorithm, the input is first propagated through the 

network, then the output is calculated. The error between the 

calculated output and the correct output, called the cost function, is 

then propagated backward from the output to the input to adjust the 

weights known as error back-propagation, or the generalized delta 

rule. The algorithm basically performs a gradient-descent method to 

minimize the mean square error cost function of all patterns 

presented during training. A typical back-propagation neural 

network architecture used in this paper is depicted in Fig. 4. The 

multilayer back-propagation ANN algorithm is used in this study. 

 

Validation of the ANN Model 
 

The evaluation of results is conducted using two indices: mean 

square error and correlation coefficient. The most widely utilized 

performance criterion to check the validation of the network is the 

average sum of square error known as mean square error (MSE) in 

the perceptron learning rule. Like least squares, the sum-of-squared 

errors is calculated by looking at the squared difference between 

what the network predicts for each training pattern and the target 

value, or observed value, for that pattern.   

The other important performance criterion is the correlation 

coefficient (r). It is a quantity that gives the quality of the least 

squares fitting to the original data. The size of the mean square error 

(MSE) can be used to determine which line best fits the data, 

although it doesn’t necessarily reflect whether a line fits the data 

tightly because the MSE depends on the magnitude of the data 

samples [22]. The correlation coefficient (r) solves this problem.  

 

Modeling with ANN 

 

A feed-forward back-propagation ANN model developed in this 

study used six variables (LMS of RTFO+ PAV residual, LMS of 

RTFO Residual, LMS of unaged binder, high failure temperature of 

RTFO residual, high failure temperature of unaged binder, and 

rotational viscosity of unaged binder) in the input layer, and one 

neuron in the output layer as illustrated in Fig. 5. One of the 

important issues in neural network is to appropriately set the 

number of hidden neurons. Experimentation must be conducted with 

the number of hidden-layer neurons and how it affects the output 

and learning dynamics of the network. The exact number of hidden 

layers and neurons and their connectivity must be specified before 

the network testing. The number of hidden neurons is usually 

determined via a trial procedure. 
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Fig. 5. Proposed NN Model. 

L(P)=LMS of RTFO+PAV residual, L(R)=LMS of RTFO residual, L(U)=LMS of unaged, FT(R)=failure temperature of RTFO residual, 

FT(U)=failure temperature of unaged, and RV=rotational viscosity of unaged 
 

Seven different neural network models were trained to find an 

optimum network architecture for the ANN model. The optimum 

architecture was chosen based on the minimum MSE and 

correlation coefficient by using cross validation to generate the 

model on different combinations of the input data set (Table 2) as 

obtained from the results of both the training and testing data sets in 

predicting the stiffness. Cross validation was used to train, test and 

validate the models due to the availability of the small number of 

data sets. The cross-validation is a method of estimating the 

accuracy of a prediction or regression model in which the input data 

set is divided into two parts, with each part in turn used to test a 

model fitted to the remaining parts. The trained ANN model is 

validated with the low testing MSE and Correlation Coefficient as 

compared to the training MSE and Correlation Coefficient value.  

 

Results and Discussion 

 

Superpave Binder Tests 

 

The viscosity of the CRM binders with 15% recycled binder was the 

highest and that of the CRM binders with 25% recycled binder was 

lowest for all binder sources. For all three binder sources, CRM 

binder with 15% recycled binder resulted in the highest failure 

temperature, followed by CRM binder with 35% recycled binder. 

With respect to 25% recycled binder, using softer grade of PG 58-22 

as a virgin binder, the CRM binder from binder sources A and B 

showed the lowest failure temperature within the same source.  

After the RTFO aging procedure, the general trend was similar to 

the findings for high failure temperature at the original state. The 

CRM binder with 15% recycled binder showed the highest failure 

temperature within each binder source. After RTFO and PAV 

procedures, the stiffness of all recycled CRM binders was much less 

than 300 MPa, the maximum value for Superpave binder. Similar to 

the DSR test results at 25C, the stiffness values from the BBR tests 

showed a similar trend regardless of the binder source. 

 

GPC 

 

Fig. 6 shows the average and standard deviation values of  LMS 

(%) obtained from the three replicate samples of each recycled aged 

CRM binder, which included three aging states: original (unaged), 

RTFO residual, and RTFO+PAV residual. As expected, higher LMS 

values were caused by RTFO+PAV aging procedures, followed by 

RTFO aging procedure. This finding was true for all recycled aged 

CRM binders; regardless of the binder source and the RAP binder 

percentage. With respect to the RAP binder percentage, a general 

trend was found that the LMS value of the recycled aged CRM 

binders with 15% RAP binder was the highest at each aging state, 

and that of the CRM binders with 25% RAP binder was lowest at 

RTFO+PAV aging state for all binder sources. The difference in the 

LMS values are thought to be attributed to the use of different virgin 

binder grades (PG 64-22 for 15% RAP binder and PG 58-22 for 

25% RAP binder). Based on the LMS values, the CRM binders with 

the highest RAP binder percentage of 35% were found to have 

generally softer binder properties than those with 15% RAP binder. 

 

ANN 

 

The stiffness of an asphalt binder is extremely important in 

determining how well a pavement performs and is fundamental in 

the analysis of response to traffic loads. The stiffness of recycled 

aged binders containing CRM is influenced by several parameters: 

the aging and recycling properties of rubberized binders, molecular 

size of binders, viscosity and failure temperature. Therefore, 

characterizing recycled aged CRM binders requires an extensive 

understanding of the relation between these parameters and the 

properties of the resulting matrix. The input for recycled aged CRM 

binders has been chosen as L(P) = LMS of RTFO+PAV residual, 

L(R) = LMS of RTFO Residual, L(U) = LMS of unaged, FT(R) = 

Failure temperature of RTFO residual, FT(U) = Failure temperature 

of unaged, and RV = Rotational viscosity of unaged, with the output 

being the stiffness of recycled aged CRM binder [5].  

To architect a steady ANN model based on the determined input 

number, the parametric study is conducted by changing the number 

of neurons in the hidden layers (one and two hidden layers) in order 

to test the stability of the network. From MSE and correlation 
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Table 2. The Examples of Collected Data Sets. 

NO. RV( Pa-s ) 
FT(UNAGED) 

(ºC) 
FT(RTFO) (ºC) STIFFNESS (MPa) 

LMS(UNAGED) 

(%) 

LMS(RTFO) 

(%) 

LMS(PAV) 

(%) 

1 1.212 72.1 77.8 55 13.47 16.94 20.85 

2 1.263 71.7 77.3 51 14.05 16.68 20.95 

3 0.938 71.9 77.1 52 13.21 17.35 21.74 

4 2.375 81.8 86.3 132 15.59 19.28 23.91 

5 2.237 80.9 85.8 133 15.57 19.14 24.13 

6 2.375 81.4 86.5 121 15.89 19.69 24.05 

7 2.45 86.3 85.9 138 17.5 21.12 25.3 

8 2.537 85.6 86.7 147 17.6 20.9 24.73 

9 2.575 86.6 86.7 137 16.64 20.75 24.48 

10 2.101 79.8 81.7 76 16.11 19.5 21.98 

11 2.152 79.5 82.8 76 16.07 19.32 22.94 

12 1.998 79.6 81.8 76 16.14 19.73 23.68 

13 2.412 83 83.5 82 16.69 21.67 24.28 

14 2.409 83.6 83.1 87 17.46 21.61 23.81 

15 2.307 83.6 83.9 84 17.38 20.45 24.75 

16 0.6 66.9 65.6 59 13.72 17.28 21.85 

17 0.588 66.9 66 59 13.47 17.19 21.47 

18 0.675 66.8 66.1 58 13.28 17.39 22.39 

19 1.288 72.4 72.8 144 16.29 19.78 25.92 

20 1.375 73.6 72.9 145 16.65 19.58 24.98 

21 1.2 72.8 72.4 154 15.77 19.96 25.51 

22 1.413 77.2 74.9 149 17.58 21.41 26.05 

23 1.362 77.2 74.7 155 17.7 21.64 26.01 

24 1.362 77.1 74.8 151 17.85 21.69 26.14 

25 0.975 71.5 71.4 83 15.28 17.74 24.42 

26 1.075 70.8 71.2 78 15.26 18.51 23.89 

27 1.125 71 71.9 81 15.32 18.31 23.84 

28 1.138 73.5 72 96 16.27 19.95 24.95 

29 1.188 74.4 71.6 90 16.47 20.15 24.58 

30 1.337 74.2 72.4 93 16.78 20.57 25.27 

31 0.713 69 70.4 86 13.28 17.42 19.17 

32 0.775 68.1 70.9 86 12.74 17.45 20.68 

33 0.825 68.6 70.5 87 13.19 17.41 20.54 

34 1.257 73.4 72.6 148 14.62 17.5 24.8 

35 1.287 74.4 73 139 14.61 17.92 24.84 

36 1.363 74 72.9 139 14.55 18.11 24.02 

37 1.579 78.8 79.9 158 17.19 20.93 27.2 

38 1.587 78.8 77.9 143 15.8 20.47 25.99 

39 1.659 79.8 78.4 150 15.27 20.14 26.64 

40 1.108 76.1 76 96 15.28 17.59 22.35 

41 1.206 76.4 75.4 92 15.66 18.29 22.12 

42 1.259 76.3 75.7 94 15.34 18.33 22.59 

43 1.458 77.9 76.9 124 16.38 20.55 24.83 

44 1.589 78.4 76.3 126 16.51 20.35 24.4 

45 1.557 78 76.4 123 16.27 20.01 24.18 

 

coefficients with different ANN configurations, the optimal number 

of hidden layers, as well as neurons in the hidden layer, were 

selected. The activation function in the hidden and output layers was 

chosen as a hyperbolic tangent sigmoid function. Other user-defined 

parameters used were momentum = 0.1 and learning rate = 0.1. The 

performance effects of the parameters, MSE and correlation 

coefficients were studied, and the values of the parameters are 

shown in Tables 3 and 4.  

Table 3 shows the performance of the networks with various 

numbers of neurons in one hidden layer.  The representation of the 

network is as follows in the model of 6-2-1: 6 input neurons, 2 

neurons in hidden layer, and 1 output neuron, respectively. For the 

trained data, the correlation coefficients in all cases of the networks 

were found to be more than 0.97. Conversely, the testing correlation 

coefficients obtained for almost all cases were between 0.657 and 

0.7440, while the 6-7-1 was observed at .948. The testing and 

training MSEs for the 6-2-1 through 6-6-1 and 6-8-1 resulted in 

nearly identical values (See Table 3). The training and testing MSEs 
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(a)                                                          (b) 

 
(c) 

Fig. 6. LMS (%) of Recycled Aged CRM Binders: (a) Unaged; (b) RTFO Residual; and (c) RTFO+PAV Residual. 

 

Table 3. Comparison of Mean Squared Error and Correlation Coefficient with One Hidden Layer 

ANN Models 
Training Testing 

MSE Correlation Coefficient (r) MSE Correlation Coefficient (r) 

6-2-1 0.0181 0.971 0.186 0.657 

6-3-1 0.0134 0.979 0.162 0.714 

6-4-1 0.0085 0.986 0.164 0.723 

6-5-1 0.0086 0.986 0.150 0.744 

6-6-1 0.0081 0.987 0.174 0.686 

6-7-1 0.0069 0.989 0.036 0.948 

6-8-1 0.0086 0.986 0.180 0.670 

 

Table 4. Comparison of Mean Squared Error and Correlation Coefficient with Two Hidden Layers. 

ANN Models 
Training Testing 

MSE Correlation Coefficient (r) Error (%) MSE Correlation Coefficient (r) Error (%) 

6-7-3-1 0.0079 0.988 3.9 0.1859 0.667 23.5 

6-7-4-1 0.0265 0.958 7.8 0.1047 0.839 16.1 

6-7-5-1 0.0076 0.988 3.7 0.1615 0.707 21.6 

6-7-6-1 0.0074 0.988 3.4 0.1730 0.680 22.0 

6-7-7-1 0.0091 0.986 4.4 0.1732 0.686 22.7 

6-7-8-1 0.0094 0.985 4.8 0.1769 0.690 23.1 

6-7-9-1 0.0074 0.988 3.7 0.0393 0.943 7.5 
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Fig. 7. Comparison of the Performance of Models for Training and Testing. 

 

 
Fig. 8. Measured Versus Predicted Stiffness of Recycled Aged CRM 

Binders with ANN (6-7-9-1) Model. 

 
Fig. 9. Comparison of the Actual and Predicted Stiffness of 

Recycled Aged CRM Binders with ANN (6-7-9-1) Model. 

 

were smallest for the 6-7-1, 0.0069 and 0.036, respectively. 

Fig. 7 shows that the performance of the network with various 

numbers of neurons in one hidden layer is measured by the MSE. 

The MSE varied significantly for trained data, dependent on the 

number of neurons. Under tested data, however, the 6-2-1 to 6-6-1 

and 6-8-1 indicated that the number of neurons does not appear to 

affect the MSE as much. The 6-7-1 has the lowest MSE and highest 

correlation coefficient with measured results for both training and 

testing sets. A further test on whether an additional second hidden 

layer could improve the network performance was conducted. In 

this test, the number of 7 neurons in the first hidden layer was fixed 

and various numbers of neurons in the second layer were evaluated. 

Table 4 shows the MSEs and correlation coefficients obtained 

from the seven networks, with a various number of neurons in two 

hidden layers. The 6-7-3-1 (6 input neurons, 7 and 3 neurons in 

hidden layers, and 1 output neuron, respectively), 6-7-7-1, and 

6-7-8-1 did not benefit significantly from the training process 

because of their limited capacity to perform nonlinear mapping of 

the input variables. The higher value of correlation coefficients and 

a smaller value MSE result in improved performance of the model. 

The training MSEs and correlation coefficients for the 6-7-3-1, 

6-7-5-1, 6-7-6-1 and 6-7-9-1 combination were nearly identical. The 

6-7-9-1 was chosen as the optimum model for the ANN model 

based on its low training and testing MSE and correlation 

coefficient. The 6-7-9-1 trained network was used to run a set of test 

data.  

Fig. 8 and 9 represent the scatter diagrams of measured and 

predicted values of stiffness from trained and tested data. The 

prediction is fairly close to the corresponding measured values of 

stiffness. For trained data, it was observed that a MSE of 0.0074, 
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correlation coefficient of 0.988, and mean absolute error of 3.7% 

were obtained. Also, for testing data, it was observed that a MSE of 

0.0393, correlation coefficient of 0.943, and mean absolute error of 

7.5% were obtained. The results for stiffness of recycled aged CRM 

binders indicate that the model as fitted accounts for 0.943 of the 

variability in stiffness with the 6-7-9-1 ANN model. 

The important indices of six input variables show that the LMS of 

unaged (the learned weight of 0.7415), high failure temperature of 

unaged (0.7364), and rotational viscosity of unaged (0.6853) are the 

most important factors in the developed models to predict stiffness 

values for the recycled aged binders containing crumb rubber. 

However, LMS of RTFO residual, LMS of RTFO+PAV residual, 

and high failure temperature of RTFO residual are relatively 

unimportant as compared to the other independent variables. 

 

Conclusions 

 

The following conclusions were reached based on the limited 

experimental data presented regarding the stiffness of recycled aged 

CRM binders: 

1. The laboratory-prepared recycled binders containing CRM 

were utilized up to 35%, and in most cases, the performance 

properties of recycled aged CRM binders showed the results 

meeting current Superpave binder requirements.  

2. The RTFO and RTFO+PAV aging procedures resulted in a 

gradual increase in the LMS values for recycled aged CRM 

binders. In general, recycled aged CRM binders with 15% and 

25% RAP binders showed the highest and lowest LMS values 

within each aging state, respectively. 

3. The ANN model with six variables explained 0.943 of the 

variability in stiffness for the recycled aged CRM binder. 

4. The stiffness was strongly dependent on the LMS of unaged 

binder. 

5. The stiffness was weakly dependent on the high failure 

temperature of RTFO residual. 

6. The ANN approach used in this study has been shown to be 

effective in creating a feasible predictive model. The 

established ANN-based models were able to predict the 

stiffness accurately. 
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