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─────────────────────────────────────────────────────── 

Abstract: Permanent deformation is one of the most critical distress types affecting the serviceability of flexible pavement structures. 

Predicting the rutting potential of asphalt concrete is a complicated task. Flow number (Fn) of asphalt mixture is an explanatory index for 

the evaluation of rutting. This paper examines the potential of the Support Vector Machine (SVM) to predict the flow number of dense 

asphalt-aggregate mixtures. This SVM is firmly based on the statistical learning theory and uses the regression technique by introducing 

accuracy (ε) intensive loss function. The results are compared with those from gene expression programming (GEP) and 

multiple-least-squares-regression (MLSR). Overall, SVM shows good performance and proves to be better than the GEP model and 

MLSR model. A sensitivity analysis is also performed to investigate the importance of the input parameters. The study shows that the 

SVM has the potential to be a useful and practical tool for prediction of flow number of asphalt mixtures.  
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Introduction 

12
 

 

Pavement deformation or rutting is a common distress in asphalt 

pavement. The result of rutting is a deflection in the pavement 

surface at the wheel path. It is generated due to traffic loading 

through the service life of pavement. Rutting failure leads to poor 

serviceability of pavement, making a vehicle’s ride rough and 

unsafe. Permanent deformation usually occurs in hot climates and 

under slow moving traffic conditions of heavy truck loads. 

Properties of asphalt and aggregate and volumetric portion in 

asphalt mixtures affect rutting resistance of asphalt mixtures. 

Evaluation of the rutting potential of asphalt mixtures has been the 

focus of much research in pavement engineering over the last 

decade. The majority of the available permanent deformation 

models are empirical or semi-mechanistic models with limited 

fundamental material characterization. Some of the empirical 

models are derived from limited sets of materials and environmental 

conditions. They lack robustness and are not transferable to other 

conditions [1]. Thus, prediction of rutting potential of asphalt 

concrete has been a complicated task. 

It is important to identify practical laboratory test methods to 

predict the rutting of asphalt mixtures. With the evaluation of 

mixture designs from conventional Marshall mixture design to the 

Superpave design, researchers have sought for a simple yet reliable 

testing procedure to assess rutting potential of asphalt mixtures for 

more than a decade. The dynamic creep test is found to be one of 

the best methods for assessing the permanent deformation potential 

of asphalt mixtures [2]. The time to tertiary flow failure is thought 

to be a good indicator of the permanent deformation resistance of 

asphalt mixtures [1, 3]. It can be quantified by the flow number (Fn), 
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as measured in a repeated load permanent deformation test. Witczak 

et al. defined the flow number as loading-cycle number where 

tertiary deformation starts [4]. Flow number attempts to identify the 

resistance of a mixture to permanent deformation by measuring the 

shear deformation that occurs because of dynamic loading [5]. 

Previous research has shown reasonable correspondence of the 

permanent strain and the flow number with rutting. Besides, 

regarding the emphasis on permanent strain, the experts generally 

agree on the flow number as the best indicator of the rutting 

potential of the asphalt mixtures [6]. The dynamic creep pretesting 

procedures are more complicated, time-consuming, and 

cost-consuming. Furthermore, experimental errors are inevitable.  

Therefore, it is necessary to develop a relationship between the 

flow number obtained from the test and parameters from the 

Marshall mix design. The soft computing approaches such as 

artificial neural network (ANN), genetic expression programming 

(GEP), and Support Vector Machine (SVM) have recently emerged 

as promising approaches. These modeling techniques are becoming 

increasingly important tools in engineering areas as a result of rapid 

development of information and computer technology [7-10]. 

Pattern recognition, classification, design of structure, and modeling 

of material behavior are primary topics in which soft computing 

approaches are employed [11-15]. Recently, Mirzahosseini applied 

multi-expression programming (MEP) and multilayer perceptron 

(MLP) of artificial neural networks to evaluate the rutting potential 

of dense asphalt-aggregate mixtures [16]. Gandomi et al. developed 

models to predict the flow number of asphalt mixture using gene 

expression programming [15]. Also, Alavi et al. utilized GP/SA 

(combined Genetic programming and Simulated annealing) 

technique to evaluate flow number of asphalt mixture [1]. 

The SVM is another efficient machine learning technique derived 

from statistical learning theory by Vapnik [17]. Some recent SVM 

applications in the pavement engineering domain include pavement 

backanalysis [18] and pavement management [19]. This paper is the 

first one to explore the feasibility of the SVM application to 

evaluate the flow number of asphalt mixtures. The theory and 
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procedure of SVM are briefly reviewed. The SVM model is 

developed relating the flow number to the particle size distribution 

of natural soil, air voids, and voids in mineral aggregate, Marshall 

stability and flow. The data set for training and testing are obtained 

from the work of Gandomi [15]. The feasibility of the SVM model 

for predicting the flow number of asphalt mixtures is investigated 

and the performance of predictive model are discussed. A sensitivity 

analysis has also been performed to investigate the importance of 

the input parameters. 

 

Support Vector Machine Regression 

 

SVM is based on the structural risk minimization (SRM) principle. 

The objective is to find a hyperplane which best separates the 

positive/negative data in the feature space. Assume that the training 

dataset 1 1 2 2( , ),( , ), ( , ), ,n

i i i ix y x y x y x X R y Y R    , l  is the total 

number of samples. A primal space is transformed into a 

high-dimensional feature space by a nonlinear map

1 2( ) ( ( ), ( ) ( ))nx x x x    . Approximating the dataset with a 

nonlinear function: 

    bxxf T                                         (1) 

The coefficients  and b can be obtained by minimizing the 

regularized risk function as following: 
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where C is referred as the regularization constant. The first term
2

 is regularization term, i.e. confidence interval, which controls 

the function capacity. The second term eR is the empirical error 

measured by the loss function. The initial choice for loss function

( , ( ))i iL y f x  is the  –insensitive loss function: 
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where  is called the tube size. 

 Optimization problem Eq. (2) can be further transformed to the 

following primal objective function: 
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where ,i i   are positive slack variables. The constant C0

determines the trade-off between the flatness and the amount up to 

which deviations larger than ɛ are tolerated. 

The Lagrange function is constructed from both objective 

function and corresponding constraints in Eq. (4) as follows: 
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This Lagrange function has a saddle point with respect to the 

primal and the dual variables at the optimal solution. The dual 

variables in Eq. (6) satisfy positive, i.e. 0,,, *
ii

*
ii  . The 

partial derivatives of L with respect to , , ,i ib     have to vanish 

to satisfy the saddle point condition: 
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Substituting Eq. (7) into Eq. (6), and a kernel function 

introducing to reduce computational demand, the optimization 

problem can be written as:  
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where      ji
2

ji xxx,xK  is called kernel function. The 

introduction of kernels according to Mercer’s theorem avoids an 

explicit formation of the nonlinear mapping, makes the dimension 

of feature space high or even infinite, and reduces the computational 

load greatly by enabling the operation in low dimensional input 

space instead of high dimensional feature space [17]. Various 

kernels can be used as follow: 

(1) Linear kernel (LIN) is shown as  

( , ) T

i iK x x x x                                        (9) 

(2) Radial basis function (RBF) kernel is shown as  
2

( , ) exp( )i iK x x x x                              (10)
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Table 1. General Performance of SVM for Different Models. 

 SVM-Ⅰ  SVM-Ⅱ  SVM-Ⅲ 

Kernel RBF Polynomial  RBF Polynomial  RBF Polynomial 

C 200000 800000  900000 900000  500000 900000 

ε 0.10 0.10  0.16 0.08  0.20 0.15 

Parameter γ = 3.6 d = 5  γ = 0.01 d = 4  γ = 0.09 d = 4 

Training Performance 0.9679 0.9560  0.9348 0.9436  0.9112 0.9252 

Testing Performance 0.9651 0.9578  0.9591 0.9520  0.9522 0.9395 

 

(3) Polynomial kernel (POL) is shown as  

( , ) ( ) 1 1,2, ,
d

T

i iK x x x x d N                         (11) 

where d, are the Kernel parameters. 

By solving quadratic program Eq. (8), regression function Eq. (1) 

is rewritten as:  
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where
i ,

i

 satisfy 0, 0  and 0i i i i      . 

Only a number of coefficients
i i   are nonzero values, and the 

corresponding training data points have approximation errors equal 

to or larger than  . They are called support vectors. 

 

Analysis of Support Vector Machine 

 

Flow number is influenced by several factors. In order to provide 

accurate assessment of the flow number, the effects of several 

influencing factors should be incorporated into the model developed. 

Based on the results of previous research, the dynamic creep test 

was chosen as an appropriate laboratory method to investigate the 

rutting potential of dense bituminous mixtures [1, 2]. Several 

uniaxial dynamic-creep tests were carried out utilizing UTM-5 to 

develop the database by Gandomi et al. [15]. The detailed 

description about the test process and the statistics of variables can 

be found in Gandomi et al. [15]. 

The main objective of this study is to implement the SVM 

methodology to estimate the flow number of asphalt mixtures. The 

database includes the measurements of coarse aggregate (C), fine 

aggregate (S), filler (FP), air voids (Va), voids in mineral aggregate 

(VMA), bitumen (BP), Marshall stability (M), Marshall flow (F), 

and flow number (Fn). They were selected based on some 

previously suggested values [1, 15]. C/S, VA (%), VMA (%), and 

M/F are considered as the input parameters based on the analysis of 

factors affecting rutting and after an extensive literature review. In 

this study three SVM models (SVM-Ⅰ, SVM-Ⅱ, and SVM-Ⅲ) are 

developed. In the SVM-Ⅰmodel, four input parameters are 

preferred: C/S, Va, VMA, and M/F. In the SVM-Ⅱmodel, three 

input parameters are preferred such as C/S, VMA, and M/F. In 

SVM-Ⅲ model, two input parameters are used: C/S and VMA.  

In performing the formulation, the data were randomly divided 

into training and testing subsets. Out of 118 data, 89 data (about 

75%) were used as the training data and the remaining 29 data 

(about 25%) were considered as testing data set. The data were 

scaled between 0 and 1 before being used in the model. In the case 

of SVM training, two types of kernel functions were used, namely 

radial basis function and polynomial function. The parameters of c, 

ε, and other kernel-specific parameters were chosen by a 

trial-and-error approach. In this study, training, testing, and 

sensitivity analysis of SVM were carried out using the SVM 

tool-box in MATLAB. The best simulation performances of SVM 

are summarized in Table 1. 

Sensitivity analysis is of utmost concern for selecting the 

important input variables. The contribution of each predictor 

variable to the prediction of the flow number is evaluated by 

sensitivity analysis. For this purpose, the cause-and-effect 

relationship between the inputs and the outputs of the SVM model 

were obtained. The main idea is that each input parameter of the 

model is offset slightly, and the corresponding change in the output 

parameter is reported. The sensitivity (S) of each input parameter 

can be calculated by the following formula [20]: 
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where N is the number of data points. The analysis is carried out on 

the trained model by varying each input parameter, one at a time, at 

a constant rate of 20% [19]. 

 

Results and Discussion 

 

This paper investigates the potential of the SVM model in 

forecasting the flow number of asphalt mixtures, which has great 

significance for pavement engineering. For quantitative assessments 

of the model’s predictive abilities, the results obtained from these 

approaches are comprehensively evaluated in statistics. In order to 

learn the performance of the developed models, several statistical 

verification criteria are used, such as correlation coefficient (R), root 

mean squared error (RMSE), and mean absolute error (MAE).  

In statistics, the overall error performances of the relationship 

between predicted and experimental values can be interpreted from 

the R value. If R value of a relationship between predicted and 

experimental values is greater 0.8, this correlation is considered 

satisfactory according to statistics [22].  

Figs. 1-6 show the results of the SVM model for the training 

dataset using polynomial function and radial basis function, 

respectively, and Figs. 7-12 show the performances of the SVM 

model for the testing dataset using polynomial function and radial 

basis function. The best results in terms of the R value are obtained 

as 0.956 and 0.968 for the SVM-Ⅰmodel. However, the SVM-Ⅲ 

model gives a fairly high R value of 0.91 and 0.95, respectively. It  
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Fig. 1. Performance of SVM-IRBF for Training Dataset. 
 

 
Fig.2. Performance of SVM-IPOL for Training Dataset. 

 

 
Fig. 3. Performance of SVM-IIRBF Fortraining Dataset. 

 

clearly appears that the results from the SVM models are in good 

agreement with the experimental values. For convenient comparison, 

the experimental and predicted results are plotted in Fig. 13, which 

shows that SVM has good ability to predict the flow number of 

asphalt mixtures. This also shows that all models are capable of 

learning the complex relationship.  

A comparative study has been made between the developed SVM 

model and other models (GEP model and MLSR-based model)  

 
Fig. 4. Performance of SVM-IIPOL for Training Dataset. 
 

 
Fig. 5. Performance of SVM-IIIRBF for Training Dataset. 

 

 
Fig. 6. Performance of SVM-IIIPOL for Training Dataset. 

 

proposed by Gandomi for the testing dataset [15]. Figs. 14-15 are 

bar graphs comparing the MAE values and the RMSE values of 

GEP model, MLSR-based model and the SVM model, respectively. 

From these figures, it is clear that there is no major difference in 

performance between the polynomial and radial basis function 

kernels. However, in general, the radial basis function kernel 

exhibits slightly better performance than the polynomial kernel. 

When comparing the performance of the proposed models, the  
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Fig. 7. Performance of SVM-IRBF for Testing Dataset. 

 

 
Fig. 8. Performance of SVM-IPOL for Testing Dataset. 

 

 
Fig. 9. Performance of SVM-IIRBF for Testing Dataset. 

 

SVM-Ⅰmodel has produced the best results in predicting the flow 

number of asphalt mixtures. Also, the SVM-Ⅱmodel, which has 

accounted for the effects of C/S, VMA, and M/F, has better 

performance than the SVM-Ⅲ model developed using C/S and 

VMA. Overall, the proposed models using more variables as inputs 

outperform those developed with fewer input variables.  

The results also clearly show that the SVM model’s performance is 

superior to the GEP model and MLSR model developed with the  

 
Fig. 10. Performance of SVM-IIPOL for Testing Dataset. 

 

 
Fig. 11. Performance of SVM-IIIRBF for Testing Dataset 
 

 
Fig. 12. Performance of SVM-IIIPOL for Testing Dataset.  

 

same parameters as input. Furthermore, the SVM models provide 

other significant advantages in addition to their good performance. 

SVM has the ability to avoid overtraining; hence, it has good 

generalization capability. Notwithstanding this, SVM formulation 

does not try to fit data. Instead, it tries to capture underlying 

functions from which the data are generated irrespective of the 

presence of noise. For SVM, this insensitivity to noise in the data is 

attributed to the ε-insensitive loss function in the model formulation. 
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Fig. 13. A comparison of the Ratio between the Experimental and Predicted Flow Number Values Using Different Models for Testing Dataset. 

 

This feature also provides control over model complexity in ways 

that alleviate the problems of over and underfitting. The evaluations 

shown above reveal that the SVM model has good prediction ability. 

The prediction accuracy of the model appears to be sufficient from 

the statistical point of view in the prediction of the flow number. 

Considering that the laboratory tests for determination of the flow 

number of asphalt mixtures can be laborious, time consuming, and 

costly, it can be concluded that using the developed SVM models is 

a reasonable way to predict the flow number of asphalt mixtures. 

Although the artificial network neural (ANN) has been also used 

widely in regression and prediction areas [1], there are some 

shortcomings for ANN, such as slow convergence speed, poor 

generalizing performance, arriving at local minimum, and 

over-fitting problems. Furthermore, there is no proper method to 

determine the number of hidden layers. SVM has ability to avoid 

overtraining, and has better generalization capability than the ANN 

model. Moreover, the SVMs can always be updated to get better 

results by presenting new training examples as new data become 

available [21]. The drawback of the SVM against other soft 

computing tools such as GP (GEP), etc. is determination of the 

parameters values of the constant C and the accuracy ɛ, as this is 

still a heuristic process.  
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Fig. 14. Comparison between SVM and other models in terms of 

MAE. 

 

 
Fig. 15. Comparison between SVM and Other Models in terms of 

RMSE. 

 

Sensitivity Analysis and Parametric Analysis 

 

Sensitivity analysis is of utmost concern for selecting the important 

input variables. The sensitivity of the radial basis function has been 

examined. The reason for choosing the radial basis function kernel 

is that it gives better results than the polynomial kernel. The results 

of the sensitivity analysis are shown in Fig. 16. From this figure, it 

is clear that C/S and VMA are the most influential parameters on the 

flow number of asphalt mixtures, followed by Va and M/F. Earlier 

findings in the literature are in close agreement with this 

observation [23, 24]. The relative importance values of the input 

parameters are investigated by Mirzahosseini [16], who also found 

the flow number was more sensitive to C/S and VMA in comparison 

with the other effective parameters. 

For further verification of the models, a parametric analysis has 

been performed to find the effect of each parameter on the flow 

number (Fn). Fig. 17 presents the tendency of the Fn predictions of 

C/S, Va (%), VMA (%), and M/F. As can be seen in Fig. 17(a), Fn 

continuously decreases due to increasing C/S. The fine aggregate 

content in asphalt mixtures is inversely proportional to C/S. It is 

well known that an increase in the fine aggregate will stiffen the 

asphalt mixtures, leading to higher Marshall stability values and 

better resistance to permanent deformation. Because the air void of 

asphalt mixtures is filled by the fine aggregate and a more integrate 

grading will be obtained. Besides the fine aggregate affect the load 

spreading characteristics of the mixture. 

It is well known that the rutting resistance of the mixtures 

increase as the air void (Va (%)) and voids in mineral aggregate 

(VMA (%)) decrease. This is verified completely by Fig. 17 (b) and 

(c). Because the specimens with higher Va become less dense, and 



Yan, Ge, and Zhang 

38  International Journal of Pavement Research and Technology                                                           Vol.7 No.1 Jan. 2014 

 
Fig. 16. Sensitivity Analysis of Input Parameters. 

 

lead to less shear resistance for the asphalt mixtures, which 

increases deformation of the mix caused by loading. As the VMA 

value increasing, the asphalt content will increase too, which 

attributes to increasing the rutting potential and softening the sample. 

The results of several studies also indicate resistance against the 

permanent deformation increase as Va value and VMA value 

decrease [23, 25, 26]. 

Fig. 17 (d) indicated that Fn initially increases when M/F 

increases up to about 3.5; thereafter, it starts decreasing. According 

to the previous studies [1, 15], the effect of M/F on the rutting 

potential of asphalt mixtures is complex. There are no clear 

conclusions in the literature about the effect of M/F to the rutting 

resistance of asphalt mixtures. Several studies indicate that 

resistance against rutting potential increases as M/F increase [26-28]. 

Recently, Tayfur et al. [29] had investigated the rutting performance 

of asphalt mixtures and found that M/F may not be a good indicator 

for measuring permanent deformation. 

 

Conclusions and Further Recommendations 

 

The application of the SVM for predicting the flow number of 

asphalt mixtures has been investigated in this study. The results 

indicate that the SVM has the ability to predict the rutting potential 

of asphalt mixtures with an acceptable degree of accuracy. The 

results obtained also show that the SVM model outperforms the 

GEP model and MLSR-based model. The use of SVM is very 

advantageous for the prediction of flow number of asphalt mixtures 

because it can perform nonlinear regression efficiently for high 

dimensional data sets. Furthermore, its solution is global. The 

sensitivity analysis of each input parameters in the SVM model is 

evaluated and indicates that C/S and VMA are the most influential 

parameters on the flow number of asphalt mixtures. The results are 

supported by the experimental evidence and presented by other 

researchers. In summary, this paper has investigated the SVM and 

finds that SVM can be viewed as a powerful and practical tool for 

the determination of flow number of asphalt mixtures. In the future, 

it is necessary to incorporate more parameters into the model to 

obtain improved results and to find a good approach to determine 

the correct values, the constant C, and the accuracy ɛ of SVM 

models.  

 

 

 

 

 
Fig. 17. Flow Number Parametric Analysis in the SVM Model. 
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