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─────────────────────────────────────────────────────── 

Abstract: Concrete pavement joint evaluation involves a number of assessment criteria, such as deflection near the joint, load transfer 

efficiency of the dowels and severity of voids under the slab. Although there are well defined thresholds for each of these parameters, 

often there arises a situation where each of the considered parameters lends contradictory assessment that leads to a considerable 

subjectivity in the evaluation process. A Self-Organizing Map (SOM), an unsupervised learning procedure in artificial neural network, is 

utilised for the first time to map the joint condition of concrete pavements from Falling Weight Deflectometer (FWD) deflection bowls. A 

novel methodology is proposed for labelling the network, whereby pavement engineering expertise can be directly used in a SOM for 

consistent deflection data classification in joint evaluation. The effectiveness of the trained network is demonstrated by using joint 

assessment parameters; namely, load transfer efficiency (LTE), void intercepts and absolute deflection. The joints were classified as good, 

marginal or poor. For the three parameters based SOM classification, an accuracy of 65-70% was obtained; this improves to 87.5% when 

the SOM was trained with 2-parameters (LTE and absolute deflection). However, when the SOM was tested with the data classified as 

‘good’, accuracy improves to around 90%. Therefore, a SOM can be a powerful supplementary tool for a consistent and non-subjective 

evaluation of concrete pavement joints. 
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Introduction 

12
 

 

Joints are vital of controlling pavement cracks and movement in 

concrete pavement. Without joints, the majority of in-service 

concrete pavements would be damaged with cracks within a short 

period. The good performance of a “joint” in a jointed concrete 

pavement is dependent on both physical and environmental factors 

[1, 2]. Physical factors include the dowel bar, foundation and 

concrete properties (strength, aggregate interlock, and aggregate 

type). Temperature variation is the main environmental factor 

causing the expansion and contraction of the slab.  

Despite good service history, jointed concrete pavement often 

suffers from poor performance of joints. A simple schematic 

diagram of the joint deterioration process is shown in Fig. 1. As 

shown in Fig. 1, the rainwater ingress through worn joint sealant 

reacts with dowel bars. Over a long period of time, and under 

repeated loading, the high stresses found at the top and bottom edge 

of a dowel bar erode the surrounding concrete causing ‘oblonging’ 

[3, 4]. This ‘oblonging’ creates multiple problems within the joint. 

The void spaces caused by the repetitive loading reduce the ability 

of the bar to adequately transfer load. If the load is not transferred 
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by the bar, it is carried into the subgrade. In addition, it increases the 

stresses in the slab because of a reduction in the transfer of load 

from one slab to another. The void spaces also allow greater 

infiltration of water, increasing the rate of steel dowel corrosion, 

resulting volume increase and lose of strength over time. The 

corroded dowel may also bind the joint and prevent proper lateral 

movement caused by the freeze-thaw pavement expansion [5].  

As traffic flows across a defective joint between two slabs, the 

dynamic loading is gradual on the approach slab and sudden on the 

leave slab, which results in an asymmetric load condition caused by 

the step in the pavement at the joint. This is shown graphically in 

Fig. 2. Asymmetric loading generally results in voids initially 

developing under the leave end of the slab and propagating towards 

the approach (i.e. in the opposite direction to traffic flow). Since the 

fundamental requirement of a slab is to spread the imposed wheel 

loads evenly throughout the foundation, any voiding, however small, 

has a detrimental effect on the performance of a pavement. When a 

void develops beneath a joint, slabs are more likely to crack due to 

fatigue and/or settlement. 

 

 
Fig. 1. Schematic Diagram of the Joint Failure Process. 
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Fig. 2. Asymmetric Traffic Loading at Joints. 

 

The structural conditions of joints are evaluated by means of the 

Falling Weight Deflectometer (FWD), by applying a load on one 

side, and then measuring the vertical deflection response on either 

side of the joint. These near joint deflections can be used to evaluate 

the load transfer efficiency (LTE), to estimate the size of the void 

under the slab and to assess the overall condition of the pavement 

near the joint. Once calculated, these parameters are then compared 

against threshold values so that engineers can assess the overall 

joint condition.  

There are well defined thresholds for each of the parameters 

derived from FWD testing, to assess the joint performance. 

However, frequently there arises a situation where each of the 

considered parameters lends contradictory joint assessment that 

leads to considerable subjectivity. This paper treats the situation 

where decisions on joint performance have to be made by 

considering three assessment criteria. However, this method of 

assessment requires considerable engineering judgment and, as with 

most real-world measurements, Furthermore, when it comes to 

network level assessments, manual classification is monotonous and 

time consuming, generally, as the number of data points can easily 

run into thousands. This necessitates an automated, minimum 

human-intervention, hence better and consistent process to assess 

and classify overall joint condition. The procedure is generally 

known as self-organising maps a pattern classification technique (a 

brief description is given in the section Self-Organizing Maps 

below). For a given FWD data set, pattern classification techniques 

can be used to conclude whether that joint is in a good condition or 

not.  

 

Research Objectives 
 

In this paper, FWD deflection data, collected from sections of 

concrete roads in the UK, are used to calculate the absolute 

deflections near the joints, voids near the slab joint and load transfer 

between two adjacent slabs. Traditionally, concrete joint 

classification is performed by calculating some and/or all of these 

parameters and then comparing them against respective threshold 

values to categorize each joint as good, marginal or poor. The 

assessment of joints by this method can lead to subjective and 

inconsistent decisions. This paper advocates supplementing this 

practice with the aid of self-organising maps (SOMs). SOMs is a 

type of neural networks, essentially provide a methodology and 

means by which high dimensional data can be easily classified and 

visualized [6]. A SOM has the added advantage of capturing expert 

engineering assessment in its node labeling process. By using 

experts’ classifications for labeling, the nodes of the trained SOM as 

good, marginal or poor, it is argued here that their knowledge of 

joint classification can be captured numerically and used for a 

non-subjective, accurate and automated joint classification process. 

This paper attempts to explore the use of SOMs in classifying 

pavement condition data collected from the FWD deflection testing. 

A brief outline of the SOM based data clustering, and a comparison 

of the automated and manual classification of data for joint 

condition is also presented. 

 

Joint Evaluation Parameters 

 

Researchers have developed different parameters to evaluate dowel 

bar condition and/or estimation of under slab voids from the 

deflection data. As part of this study, the following three most 

widely accepted parameters are considered.  

 Absolute deflection (D) under the loading plate to evaluate 

general pavement condition near the joint. Although absolute 

deflection provides an indication of overall pavement condition, 

the deflection value is generally low because of the high 

flexural rigidity of the concrete pavement. As a result, absolute 

deflection may not give true representation of the joint 

condition if the deflection is very low. 

 Load transfer efficiency (LTE) across the slab to estimate the 

performance of a dowel bar as a load transfer device. The LTE 

measured using a FWD can be defined by the following 

equation. 

Joint load transfer (%) = (d unloaded /d loaded) * 100           (1) 

where,  

d unloaded:
 deflection of the unloaded slab 50mm from the joint  

d loaded: deflection of the loaded slab 50mm from the joint 

 Void intercept (VI) near joints to estimate possible under slab 

void. Where traffic flows in one direction, voids generally 

develop on the leave side of the joints and propagate against the 

flow of traffic towards the approach side. Researcher’s 

developed different techniques utilising FWD deflection 

parameters to estimate the size of the voids [7-9]. To determine 

void intercept values, at least three tests should carried out at 

each position with different load levels. Voids underneath the 

joint will be closed as the pavement is loaded. Increasing the 

applied load will further increase the closure of the void 

resulting in deflections that will not increase proportionally 

with the load level. In theory, in a no-load condition the 

corresponding pavement deflection should also be zero. 

However, for voided foundations where deflections may not 

increase proportionally with load, a linear regression analysis 

may not intercept the origin of a load versus a deflection plot. 

The point at which the linear regression line intercepts the 

y-axis (positive or negative) is known as the void intercept (Fig. 

3). The magnitude of the intercept increases as the size of the 

void present beneath the slab increases. It is important to note 

that detecting voids in this manner should be treated cautiously 

as factors like test temperature and dowel misalignment could 

have significant influence on the results.  
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Fig. 3. Graph Showing Void Intercepts Analysis. 

 

Self-Organizing Map (SOM) 

 

Traditionally, pattern classification from a data set has been 

performed using statistical methods. However, the introduction of 

intelligent computational models (also generically known as 

artificial intelligence methods), such as neural networks and fuzzy 

logic, has resulted in high data processing speed, good learning and 

adapting abilities (for the classification system), efficient data 

storage and management and thereby reduce computing resources 

for pattern classification [10]. As these intelligent data modelling 

methodologies require far less information than conventional 

statistical method, compact computing resources are sufficient. 

Since real life engineering decisions are made in ambiguous 

environments that require a very high level of human expertise that 

must remain consistent, the application of soft computing can be an 

attractive option for engineering practice.  In the last two decades, 

SOMs have been extensively used in image analysis/classification 

and speech recognition [11, 12]. In recent years, SOMs have found 

their way into some areas of civil engineering, e.g. water resources 

[13] and geology [14]. However, a literature search suggests that 

SOM has not been explored yet to categorize/classify pavement 

joint condition evaluation.  

Artificial neural networks (ANNs) are inspired by biological 

nervous systems and present a very effective non-algorithmic, 

numerical approach to information processing [15]. ANNs have 

been used in a variety of situations ranging from intelligent control 

of machines [10], weather forecasting [16], cell identification in 

biology [17], financial fraud detection [18] to pavement and 

geotechnical engineering [19, 20]. A number of network models 

have been proposed. Multilayer perceptions, radial basis function 

networks, Kohonen self-organizing maps (or simply self-organizing 

maps), and the Hopfield network are some of them. The networks 

are generally trained by any one of the three different procedures: 

supervised learning, unsupervised learning and reinforcement 

learning.  

Multilayer perceptrons (commonly used neural network) are 

ubiquitously used nowadays that there is a real danger in identifying 

any given type of neural network as a multilayer perceptron, which  

  
Fig. 4. A two-dimensional SOM with 100 Nodes in a 10x10 Grid 

[19]. 

 

has commonly come to be known as neural network. In reality, there 

are a number of distinct types of neural networks, both by the way 

of network architectures and algorithms used. Hence, it is very 

important to recognise the differences between SOMs and 

multilayer perceptrons. Briefly, SOMs are trained by an 

unsupervised learning procedure as opposed to the supervised 

learning procedure conducted in the widely used, multi-layer 

perceptron neural networks.  For a detailed description on the 

difference between these methodologies, readers are directed to 

Jang et al. [15]. 

 

SOM; architecture and Algorithm 

 

A simple SOM network is shown in Fig. 4. Each node (i.e. neuron) 

has a weight vector, where the number of weights is equal to the 

number of features in the input. For example, for the case shown in 

Fig. 4, since the input vector is n-dimensional given by x={x1, 

x2, …., xn}, which indicates there are n features in this classification 

problem, each of the 100 nodes will have n number of weights 

vectors collectively denoted as w; node i will have a weight vector 

wi={wi1, wi2,…..,win}. Whenever a new input (of n dimensions) is 

presented during the training stage, all the neurons in the network 

compete with each other and the one with the closest weights wins. 

For each input x (t) winning neuron c is determined by the 

following relationship: 

|x(t)-wc| = min {|x(t)-wi|}                     (2) 

where, | x(t)-wi | = {

n

1j
 (xj-wij)}

1/2 

 

i.e. the best neuron is selected such that the Euclidian distance 

between the weights of a neuron and the input x(t) is minimum.  

The winning neuron and its neighbourhood neurons are updated 

for their weights, in such a way that the weights are brought closer 

to the input. The neighbourhood Nc (t) includes all the units inside a 

certain distance from the best matching unit c. Hence, the training 

process is expressed as, 
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        wi(t)+α(t){x(t)-wi(t)}       if i Nc(t) 

wi(t+1) =   

wi(t)                    if i   Nc(t) 

where, α (t) is the learning rate (0 < α (t) < 1)  

The neighbourhood Nc(t) for weight updating starts at a large 

value and gradually shrinks as the number of training inputs 

presented to the network increases. Towards the end of the training 

there will not be any neighbourhood at all, hence only the weights 

of the winning neuron get updated. Similarly, α (t) is decreased 

monotonously to zero during training. When the training phase is 

completed, each node will be representing a set of the input data that 

have similar characteristics; hence, the overall network will 

represent all of the input data in a discrete manner. At this point an 

expert of the classification procedure will decide which of the nodes 

belong to which clusters, based on their trained weights. When a 

new input is given to the network for classification, the neuron, 

which has the closest weights, wins and the data is assigned the 

class label of that neuron. 

 

SOM: Convergence 

 

The training phase of SOM can be very slow. Batch versions of the 

SOM training rule are designed to update network weights only 

after all training data have been presented to it in contrary to 

updating the weights after the supply of each data [21]. A time 

varying learning rate has also been used to improve the speed of 

convergence during training, for example an exponential decay with 

time.  

For the problem of joint classification training data is usually 

static. Hence the training data set, in an ideal situation, is supposed 

to cover all possible variations/ combinations possible in real-world 

data, training is expected to be a one-off process. Hence converge 

time is not of utmost importance here and the general training 

algorithm outlined in the SOM: architecture and algorithm section 

can be used without any alterations.  

 

SOM: Clustering and Classifying  

 

SOM is a topology preserving transformation that clusters similar 

patterns together. Upon the completion of training, nodes are left 

with trained weights. No cluster boundaries exist as yet. It is now 

important to identify the nodes that represent a given pattern and 

define them as members of a single cluster. Cluster boundaries can 

be determined in an automatic manner. The unified distance matrix 

(U-matrix) is one such method by which cluster boundaries can be 

determined and visualized. The U-matrix contains a geometrical 

approximation of the node weight distribution in the SOM [21]. For 

each neuron in the SOM, the U–matrix denotes the distance to the 

neighbouring neurons b considering their weight vectors. Large 

values in the U-matrix signify cluster boundaries. The cluster 

boundary visualization is usually provided by a colour scheme 

denoting distances.  

The SOM can be used for data classification as in the current 

research. This paper proposes to capture human knowledge hence an 

expert/ experts will be considering all network nodes individually 

and assign them classes. This labelling process essentially identifies 

 
Fig. 5. FWD Testing for Joint Testing (DMRB, 2008). 

 

classes and thereby defines class boundaries. The SOM, once 

labelled, can be used to classify new data.  

 

SOM: Applications 

 

The SOM has been extensively used for clustering as well as a 

classifier in a variety of applications ranging from biology to 

machine control. The SOM is superior to many other techniques 

owing to its advanced visualization capabilities, especially for 

large-dimensional data.  

 

Data Collection 
 

The FWD data for this study were collected from sections of 

concrete roads in the UK which experience heavy traffic. Cores 

were extracted at regular intervals to determine their thickness, 

assessing the internal condition of the material and their 

compressive strength. The thickness of the pavement was found to 

be fairly uniform between 250 mm to 300 mm with an unbound 

base. The slabs were approximately 3 m to 5 m long and jointed 

with dowel bars. The test setup as recommended in the HD 29/08 of 

the Design Manual for Roads and Bridges (DMRB) for concrete 

pavement joint testing is shown in Fig. 5 [22]. In order to calculate 

the load transfer efficiency, the d200 geophone was positioned around 

50 mm from the joint of loaded slab whereas d300 geophone was 

positioned 50 mm from the joint of unloaded slab. The ratio of 

d300/d200 was used to calculate the LTE.  At each location, four 

loads, one bedding load and three at 700 kPa, 1000 kPa and 1300 

kPa were applied. The pavement temperatures were recorded at the 

surface and at 100mm from the surface and it was fairly consistent 

between 8oC -12oC throughout the test duration.  

It should be noted that the load transfer measurement is one of the 

most time-consuming parts of deflection testing although the testing 

could be conducted in a comparatively efficient manner with a 

trained operator. It requires the operator to carefully position the 

load plate and sensors across the joint, using either cameras 

mounted under the FWD or with the help of an assistant. The testing 

was limited to the approach side of the slabs only as testing on both 

the approach and leave sides would significantly increase overall 

testing time.  

 

Results 

 



Mathavan, Rahman, and Stonecliffe-Jones 

Vol.7 No.4 Jul. 2014                                              International Journal of Pavement Research and Technology  291 

Table 1. Threshold Limits for Condition Parameters. 

Parameters Good Marginal Poor 

Load Transfer Efficiency (LTE) 

(%) 
>75% 50-75% <50% 

Void Intercepts (VI ) (μm)a <25 25-50 >50 

Absolute Deflection (D) (μm) 
<200 201-225 >225 

Note: a: AASHTO [24] 

 

 
Fig. 6. The Normalised Deflection at the Centre of Loading Plate. 

 

 
Fig. 7. Load Transfer Efficiency for All Joints @ 700 kPa.  

 

Conventional Classification 

 

Approximately 1,409 deflection bowls were analysed. The threshold 

limits for each parameter were set according to the guidance given 

in both the AASHTO (American Association of State Highway and 

Transportation Officials) and HD 30/08 in DMRB [23] and are 

shown in Table 1. According to the AASHTO [24], the void 

intercept values greater than 50 μm (0.002 inch) at the theoretical 

zero are considered to be typical of a situation where voids are 

expected. However, for this investigation, a lower value 25 μm were 

adopted. This was chosen from the practical experience gained by 

the authors from the heavily trafficked concrete pavement in UK 

road network.  

Figs. 6, 7, and 8 present the absolute deflection, LTE and VI 

results for all joints. The results show considerable variations in 

joint condition along the road. It can be seen that the absolute 

deflection is generally variable, and the majority of the joints have  

 
Fig. 8. Void Intercepts (VI) Efficiency for All Joints. 

 

values less than 200 μm indicating overall good pavement condition 

near the joint. The results indicate that the lower the deflection of 

the concrete near joint, the more efficient the joint system for load 

transfers. The LTE is also generally variable but most of them were 

greater than 75%, indicating a good dowel condition to transfer the 

load. Although, the VI also follows a similar trend, significant 

numbers of joint between slabs 1,000-1,400, show intercepts greater 

than 50 μm, possibly indicating the presence of under slab voids. It 

can also be seen that negative void intercepts are calculated for 

significant numbers of joints. This is due the steep slope of the 

straight light caused by the large increase in deflection at 1000kPa 

and 1300kPa loading. This is likely to be the combined effect of 

oblonging of dowels and under slab voiding (weak foundation). A 

negative intercept would result from a stress-softening in support 

system. 

A plot of the LTE against VI is given in Fig. 9 to visualize 

whether there is any relationship between under slab voids and 

dowel condition. It can be seen that despite good load transfer 

between joints, the VI is greater than 50 μm in a significant number 

of cases indicating a potential foundation problem due to the 

deterioration of the granular base. In addition, the results also show 

a large number of joints with some form of problems showing ‘good’ 

LTE with ‘low’ to ‘marginal’ void intercepts. Similarly, the plot of 

absolute deflection against VI intercepts as shown in Fig. 10, 

highlight that a significant number of joints have  potential 

foundation problems (high void intercepts despite) despite good 

quality concrete (low deflection near the joint).  This information 

can be used by engineers to identify joint locations with existing 

and/or developing defects. However, the whole process requires 

considerable engineering judgment, which is subjective and may 

lead to poor decision-making on the quality of a given joint.  

 

SOM-based Classification: Configuration and Training  

 

The same data was used to train in a SOM to develop an expert 

system for a consistent decision-making. However, the distribution 

of the obtained data was not ideal for training an artificial neural 

network, as there is only a small percentage of data that could 

indicate a ‘poor’ joint. The majority of the data corresponds to a 

good joint condition. In an ideal situation, there must be 

approximately equal number of samples representing each 

categorization scenario (i.e. clusters); any decision can result in a 
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Fig. 9. Load Transfer Efficiency and Void Intercepts for All Joints. 

 

 
Fig. 10. Absolute Deflection Near Joints and Void Intercepts for All 

Joints. 

 

joint being classified as good, marginal, or poor. It is important to 

note that as the test position were kept as constant as practically 

possible in the field, the temperature was relatively constant during 

the test, and the slab dimensions were similar in all tested sections, 

no adjusted was felt necessary during SOM analysis. 

Presenting the network with equal data distribution representing 

the three classes will ensure that the network is presented with 

almost all the possible data combinations during its training phase. 

Out of the 1,409 samples, 24 representing each of the three possible 

clusters were retained for testing and the remaining 1,385 were used 

to train the network.  The values of D, LTE and VI and their 

respective threshold values are denoted by 1 for ‘good’ conditions, 

by 2 for ‘marginal’ conditions, and 3 for ‘poor’ conditions   for 

various parameters including that of overall joint condition, 

throughout this paper.  

The overall condition of each joint was assessed in two ways- by 

evaluating the average of all three individual parameters and by 

considering the worst-case condition of all three parameters.  

It should also be noted that although the deflection bowl will have 

discontinuity at joints, this discontinuity would be low for a good 

joint and high for defective joints. The whole deflection bowl 

therefore can provide a good indication of the overall condition of 

the pavement and foundation. However, the manual assessment part 

involved the use of only seven deflection parameters, d-300, d-200 or 

d300, d200, (depending on the testing position), for the calculation of 

LTE at 700 kPa, d1 at 700 kPa for absolute deflection, and d1 at 700 

kPa, 1000 kPa and 1300 kPa loading for the estimation of VI. For 

SOM based classification, the whole deflection bowl (i.e. all 9 

deflections) must be used together with d1’s for the loadings of 1000 

kPa and 1300 kPa (i.e. 11 parameters, in total) for a superior 

performance of the network. However, principal component 

analysis on the data of 1409 deflection bowls using Matlab®  

suggests that there is a negligible variation in the variables d600, d900, 

d1200 and d1800, when the whole dataset is considered (less than 1% 

variation). For a detailed treatment on principal component analysis 

and its implications on data classification, refer to a standard text 

such as Jang et al. [15]. Hence, the effect of these four variables on 

joint classification is ignored and only the other seven inputs are 

supplied to the SOM.  

For a given dataset, the number of SOM nodes is used as 5√n, 

where n is number of data instances in the dataset (SOM toolbox 

[25]). As there are 1385 data points (joints) for training, the network 

must have, according to the above formula, 186 nodes. For a 

rectangular network configuration (which is the most commonly 

used type) the ratio of the rectangle’s side lengths are given by the 

ratio between the first two largest eigenvalues of the dataset. The 

two largest eigenvalues are found to be 83,602 and 18,865 (all 

eigenvalues of the dataset can be found through principal 

component analysis on it). Hence, the ratio is 4.29. The closest 

configuration that matches the values of the total number of nodes 

and the aspect ratio is 7 x 28 (196 nodes). A network created using 

the C++ programming language is trained with the 1,385 data. At 

the end of the training phase each of the 196 nodes will have seven 

weight values representing each of the seven inputs. 

 

Trained-SOM: Capturing Expert Knowledge  

 

The trained network must now be taken through a very important 

labelling process. At this point, each node of the trained network has 

weights representing all 7 deflection values in that order. By 

considering the weights each node in the trained network, the 

labelling process must identify every node as, for example, good or 

bad. The labelling of the node is crucial as this determines how the 

future joint data that will be supplied to the network for 

classification is going to be used. The labelling process allows the 

data to be treated in a flexible and ‘soft’ manner rather than the rigid 

threshold value based joint classification (in the form of equations 

implemented through Microsoft Excel spreadsheets). The novelty in 

this line of research, hence in joint data classification, comes from 

this flexibility and self-organizing map (and unsupervised learning) 

is a unique structural paradigm that facilitates this.     

This paper proposes a new direction whereby total emphasis is 

placed on expert’s knowledge of joint deflection data than on 

inequality relationships that has been in use until now. The 

proposition here is that pavement experts from academic, industry 

and government organisations utilize their experience to label a set 

of representative network covering various pavement, foundation 

and weather condition scenarios. Since the network is proposed to 

be trained with a large amount of joint condition data, this labeling 

process, once performed captures the knowledge of the experts 
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numerically. The labeled network is now embedded with the 

knowledge that has been acquired by the experts through years and 

years of experience. Hence the classification of all future data will 

not only be classified accurately, it will also be a consistent and 

non-subjective process. This form of knowledge capture is novel 

and unique for the transportation industry and is the main thrust of 

this paper.  

This form of knowledge capture is planned as a future extension 

of this research. In the absence of such a knowledge capture process, 

the classification effectiveness/accuracy of the self-organizing map, 

trained in this research, must be verified in one way or another. 

Hence, it is planned here to label the trained network using the 

established method of conventional classification that this paper 

recommends to be replaced, and then to test it with the some new 

data that has also been categorized with the same method of data 

interpretation. In this regard, the next section labels the trained 

SOM with the knowledge from the conventional way of 

classification. Then the SOM was tested with the 24 data samples 

retained for testing and compared against the categorization 

performed by the traditional data interpretation. It must be stated 

again that this process is ONLY performed to test the classification 

effectiveness of the network, and hence is NOT a method this paper 

advocates. 

Based on the node weights at the end of training, the linguistic 

values (i.e. 1-good, 2-marginal, or 3-poor) of D, VI, and LTE are 

calculated for each node of the SOM (the calculations are performed 

as specified in the section Joint Evaluation above). Then each node 

is identified as good (1), marginal (2) or poor (3), based on the 

average of the linguistic values for D, VI, and LTE, as shown in Fig. 

11. In addition, worst case based on the poor category for the 

linguistic values of D, VI, and LTE is also considered for node 

labelling. The corresponding node labelling is depicted in Fig. 12.  

The test data of 24 samples was then supplied to the two-labelled 

SOMs for classification. The data of a given joint were fed to the 

trained SOM. By considering all of its nodes, the SOM identified 

the node that was closest to the data  The identified node was then 

used, with the aid of either Fig. 11 or Fig. 12, to label the data 

(thereby the joint condition) as good, average or poor. In addition, 

the 24 samples were also classified manually. Both the 

average-based and worst case condition-based classifications are 

performed manually. The results of classification (both manual and 

SOM-based) are given in Figs. 13 and 14 respectively. 

 

Performance Comparison: 2- Parameter Based 

Classification (LTE and Absolute Deflection) 

 

The performance comparison was done by checking the accuracy of 

the SOM based classification from the following formula 

Classification accuracy of the SOM (%) = (NC / NT) * 100       (4)  

where, NC = Number of data points correctly classified by the SOM,  

NT = Total number of data points classified by the SOM 

With reference to Fig. 13, a classification accuracy of 71% is  

 

 

 
Fig. 11. Trained Network –based on the Three Category (LTE, VI and D) Average Ranking.  

  

 
Fig. 12. Trained network – based on the Three Category (LTE, VI and D) Worst Ranking. 

 

 
Fig. 13. Manual vs. SOM- overall Classifications Based on Average 

for the 24 Test Slabs. 

 
Fig. 14. Manual vs. SOM- overall Classifications Based on 

Worst-case Condition for the 24 Test Slabs. 
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obtained using SOM when the average of all individual joint 

conditions parameters is considered. According to Fig. 14, 62.5% of 

the data are correctly classified by the trained SOM for worst-case 

condition. The 30-35% classification error found must be chiefly 

attributed to the lack of data concerning bad joints. SOMs and 

neural networks in general, are numerical models that respond to the 

data supplied to them during the training phase. Although 

approximately equal number of data for each joint condition (good/ 

marginal/ poor) are used to test the performance of the trained SOM 

(24 datasets are handpicked such), it is noted that the training set of 

1385 samples does not have enough representation of all the three 

possible joint conditions. Hence, the SOM has not been shown 

enough ‘evidence’ of possible data combinations during its training 

phase, making it to respond poorly to previously 

un-encountered/scarcely encountered data patterns.  

As reported earlier in the results section, the SOM is presented 

with adequate numbers of joint data that correspond to a good joint 

condition (denoted by the linguistic variable 1). This is reflected in 

the classification results presented in Figs. 13 and 14. According to 

Fig. 13, out of the 13 samples classified manually as good (refer to 

the bottom row marked with ‘X’s) only sample number 16 has been 

wrongly classified as marginal by the SOM. This reflects a 

classification accuracy of 92.3% from the SOM. A similar analogy 

for Fig. 14 results in an accuracy of 85.7% (6 out of 7 data) for the 

condition named good. Therefore, it is strongly believed if the SOM 

is presented with more data that correspond to the joint conditions 

of marginal and poor, the overall classification accuracy will 

increase.  

A significant number of VI showed negative intercepts (Fig. 8), 

and it was felt that the categorization of VI may have influenced the 

accuracy of the SOM. In order to compare the effects of the void 

intercept on the classification performance, two SOMs (for both the 

average and worst-case scenarios) were also trained by considering 

two parameters, LTE, and absolute deflection, D. A similar 

procedure was followed whereby the networks were trained with 

1385 joint data and their performances were tested with the 24 joint 

data. The trained network configurations with their classes are 

shown in Figs. 15 and 16. It can be seen that the exclusion of VI has 

removed the majority of incongruence in the data, and hence 

enhanced the performance of SOM classification.  

The trained networks were then tested with the test set of 24 

FWD data. The classification results from the two SOMs were 

compared against the manual classification results for the 24 data 

sets. Figs. 17 and 18 depict the performance comparison for the 

cases of average and worst-condition respectively.  

For both the categories (i.e. average and worst-case), a 

classification accuracy of 87.5% was obtained. This accuracy is far 

superior to the classification accuracies of 71% and 62.5% obtained 

for the SOMs trained with data that included VI.  This emphasizes 

the need to further scrutinize the role of VI on joint condition 

evaluation if conventional classification technique is followed. 
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Fig. 15. Trained Network – based on the Two-category Average 

Ranking. 

1 1 1 2 3 3 1 1 1 1 2 3 3 3 3 3 3 

1 1 1 3 3 2 1 1 1 1 1 2 2 2 3 3 3 

1 2 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 

1 1 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 

1 1 1 2 1 1 1 1 1 1 1 1 2 3 3 3 3 

1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 

1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 

1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 

1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 

1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 3 3 

1 1 1 1 1 1 1 2 3 2 3 3 3 3 3 3 3 

Fig. 16. Trained Network –poor Category of Any of the 3-parameter 

Based Ranking (LTE, VI and D). 

 

 
Fig. 17. Manual vs. SOM Classifications- LTE & D Based on 

Average for the 24 Test Slabs. 

 
Fig. 18. Manual vs. SOM Classifications LTE & D Based on 

Worst-case for the 24 Test Slabs. 
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Conclusions 

 

In this paper, for the first time SOM has been evaluated as a 

potential method for automated data classification as part of 

concrete pavement joints condition assessment using multiple 

parameters such as load transfer efficiency, void intercepts and 

absolute deflections. The paper also proposes a novel methodology 

whereby expert knowledge capture can be performed by the neural 

network paradigm used. To demonstrate the ability of the trained 

SOM in classifying joint data consistently and accurately, in the 

absence of an expert-based process, the network was labelled with 

conventional data differentiation method. Overall, accuracy in the 

region of 65-70% has been achieved by the automated SOM-based 

classification. This accuracy is obtained despite presenting the SOM 

with joint condition data predominantly classified as ‘good’. When 

the SOM is tested with the data of the class ‘good’, the SOM 

classification accuracy improves to around 90%. Based on these 

results, the use of SOM for joint condition classification appears to 

be very promising. Furthermore, two parameter-based 

classifications (LTE and D) showed the overall accuracy improved 

to 87.5%, highlighting the successful nature of the automated 

classification procedure obtained with SOM. These accuracy values 

show that the trained network has good potential for data 

classification. A process to use joint classification experts’ 

knowledge in labeling the SOM is planned as a future activity.  
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