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─────────────────────────────────────────────────────── 

Abstract: The use of neural networks (NNs) has increased tremendously in several areas of engineering over the last three decades. This 

paper is intended to provide a state-of-the-art survey of NN applications in pavement engineering over the last three decades. The 

reported studies are briefly summarized under eight different categories: (1) prediction of pavement condition and performance, (2) 

pavement management and maintenance strategies, (3) pavement distress forecasting, (4) structural evaluation of pavement systems, (5) 

pavement image analysis and classification, (6) pavement materials modeling, and (7) other miscellaneous transportation infrastructure 

applications. To maintain consistency, the review was primarily based on archival journal publications although novel 

application-oriented NN implementations published in peer-reviewed conference proceedings and edited books were also considered. 

Recent publications focusing on the development and use of hybrid neural systems in pavement engineering were also included in the 

review. The increasing number of publications in this area of research in combination with other soft computing techniques every year 

definitely indicates that more and more students, researchers, and practitioners are interested in exploring the use of NNs in the study of 

pavement engineering problems. 
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Over the past three decades, there has been an increased interest in 

the use of neural networks (NNs) in civil engineering fields such as 

structural, environmental and water resources, traffic, geotechnical 

as well as pavement engineering. NNs represent a class of robust, 

non-linear, computationally intelligent models applicable to a wide 

variety of problems. NNs have been found to be useful tools for 

solving pavement engineering problems, which deal with highly 

nonlinear functional approximations. 

Pavement engineering encompasses a broad spectrum of study 

including issues related to design, analysis, evaluation, performance, 

maintenance, rehabilitation, and management of both highway and 

airport pavements. The NN-related studies reviewed in this paper 

focus on three major pavement types: flexible or asphalt pavements, 

rigid or concrete pavements, and composite pavements. 

Neural networks are information processing computational tools 

in which highly interconnected processing neurons work in 

harmony to analyze and solve complex problems in a nontraditional 

manner. This power of the NNs, emulating the biological nervous 

system, lies in the tremendous number of interconnections as they 

provide notable advantages in learning and generalizing from 

examples, producing meaningful and cost-effective solutions to 

various problems even when input data contain errors or are 

incomplete, adapting solutions over time to compensate for 

changing circumstances and processing information quite rapidly 

often in real time. 

The adoption and use of NN modeling techniques in the 
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Design [1] has especially placed the emphasis on the successful use 

of neural nets in geomechanical and pavement systems [2-3]. Yet, 

many pavement engineering practitioners may not be fully aware of 

the benefits of using NNs and other computational intelligence 

systems. These obstacles can be overcome by providing the 

engineering practitioners with a better understanding through 

necessary background information and documentation of successful 

NN applications in pavement engineering. 

This paper presents a review of neural network techniques and 

applications used in pavement engineering over the last three 

decades in eight major categories: (1) predictions of pavement 

performance and pavement condition, (2) pavement management 

and maintenance strategies, (3) pavement distress forecasting, (4) 

structural evaluation of pavement systems, (5) pavement distress 

image analysis and classification, and (6) other miscellaneous 

pavement applications. Similar articles focusing on the use of NNs 

in civil and transportation engineering applications have been 

published previously [4-9]. However, these publications did not 

specifically concentrate on pavement engineering. The aim of this 

paper is to fill the gap in this area and present an up-to-date 

comprehensive review on the use of neural networks in the field of 

pavement engineering. The use of the term ‗neural networks (NNs)‘ 

is more prevalent in recent literature compared to that of ‗artificial 

neural networks (ANNs)‘ and the same nomenclature is followed in 

this paper. The use of NNs in pavement materials modeling and 

characterization will not be discussed in this paper as it has been 

recently reviewed by the authors elsewhere [10]. 

 

Overview of Neural Networks 

 

Imitating the biological nervous system, neural networks are 

information processing computational tools capable of solving 

nonlinear relations in a specific problem [11-14]. Like humans, they 

have the flexibility to learn from examples by means of 

interconnected elements, namely neurons. Neural network 
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architectures, arranged in layers, involve synaptic connections amid 

neurons which receive signals and transmit them to the other via 

activation functions. Each connection has its own weight and the 

network ‗learns‘ by adjusting the weight between neurons to 

minimize error between the predicted and expected values. Also, in 

the learning process node biases are also adjusted in addition to the 

connection weights. Since interconnected neurons have the 

flexibility to adjust the weights, neural networks have powerful 

capacities in analyzing complex problems. Neural networks 

motivated by the neuronal architecture and operation of the brain 

can contribute to a better understanding of several complex, 

non-linear pavement engineering problems with various pavement 

and soil variables. 

The basic element in the NN is a processing element, called as 

artificial neuron or node (see Fig. 1). Each neuron contains a very 

limited amount of local memory and performs basic mathematical 

operations on data passing through them. These neurons are highly 

interconnected in layers such as an input layer, an output layer and 

one or more hidden layers. The computational power of NN comes 

from this interconnection which makes input data concurrently 

processed in artificial neurons [15]. 

An artificial neuron receives information (signal) from other 

neurons, processes it, and then relays the filtered signal to other 

neurons [12]. The receiving end of the neuron has incoming signals 

(x1, x2, x3…. and xn). Each of them is assigned a weight (wji) that is 

based on experience and likely to change during the training 

process. The summation of all the weighted signal amounts yields 

the combined input quantity (Ij) which is sent to a preselected 

transfer function (f), sometimes called an activation function. A 

filtered output (yj) is generated in the outgoing end of the artificial 

neuron (j) through the mapping of the transfer function. The 

parameters can be written as per the following equations: 


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There are several types of transfer functions that can be used, 

including sigmoid, threshold, and Gaussian functions. The transfer 

function most often used is the sigmoid function because of its 

differentiability. The sigmoid function can be represented by the 

following equation: 
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Where   = positive scaling constant, which controls the 

steepness between the two asymptotic values 0 and 1 [12]. 

The NN performs two major functions: learning (training) and 

testing. A training data set and an independent testing data set are 

prepared for these functions. Inputs from a training data set are 

presented to the input layer to start the propagation of data. Inside 

the network, weights are adjusted when data pass between artificial 

neurons along the connections. Since interconnected neurons have 

the flexibility to adjust the weights, NN has the ability to analyze 

complex problems. It uses a learning rule to find a set of weights 

 
Fig. 1. Schematic of a Simple Model Neuron. 

 

such that the error is minimum. This process is called ―learning‖ or 

―training‖. The following are the three broad types of learning in 

neural network technology [15]: 

 Supervised learning: system/weight is adjusted by comparing 

the network output with a given or desired output 

 Unsupervised training: the network is trained to form 

categories based on similarity among the data and identify 

irregularities in data  

 Reinforcement learning: the network attempts to learn the 

input-output vectors by trial and error through maximizing a 

performance function. The system can identify whether a 

given output is correct or not but cannot estimate the exact 

output 

Once the training phase of the model has been successfully 

accomplished, the network performance is verified by presenting 

independent testing datasets to the NN. This process is called 

―testing.‖ Details regarding the theory and mathematics behind the 

NN is available in several sources [12, 16-18] and is beyond the 

scope of this paper.  

There are different types of neural network types such as 

back-propagation algorithms (BP), radial basis function network 

(RBF), probabilistic neural networks (PNN), and generalized 

regression neural networks (GRNN). Computing abilities of neural 

networks have been proven in the fields of prediction and 

estimation, pattern recognition, and optimization [12, 16, 17, 19, 

20]. The best-known example of a neural network training 

algorithm is back-propagation [12, 21-23] which is based on a 

gradient-descent optimization technique. A typical multi-layer 

perceptron back-propagation architecture with 2 hidden layers is 

illustrated in Fig. 2. The back-propagation algorithm is described in 

many textbooks [12, 16-18]. 

 

Advantages and Limitations of Neural Networks 

 

NNs provide an analytical alternative to conventional techniques 

which are often limited by strict assumptions of normality, linearity, 

variable independence etc. Because a NN can capture many kinds of 

relationships, it allows the user to quickly and relatively easily 

model phenomena which otherwise may have been very difficult. 

Neural networks offer a number of advantages, including requiring 

less formal statistical training, ability to implicitly detect complex 

nonlinear relationships between dependent and independent 

f
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Fig. 2. A Typical Multi-layer Perceptron Back-propagation Neural 

Network Architecture with Two Hidden Layers. 

 

variables, ability to detect all possible interactions between predictor 

variables, and the availability of multiple training algorithms. 

Despite their good performance in many situations, neural 

networks suffer from a number of shortcomings. For example, 

neural networks cannot explain results using conventional methods. 

In problems where explaining rules may be critical, neural networks 

are not the tool of choice. They are the tool of choice when acting 

on the results is more important than understanding them. Even 

though neural networks cannot produce explicit rules, sensitivity 

analysis does enable them to explain which inputs are more 

important than others. This analysis can be performed inside the 

network, by using the errors generated from back propagation, or it 

can be performed externally by poking the network with specific 

inputs. Secondly, neural networks usually converge on some 

solution for any given training set. Unfortunately, there is no 

guarantee that this solution provides the best model of the data. 

Therefore, the test set must be utilized to determine when a model 

provides good enough performance to be used on unknown data [12, 

16, 17]. Karlafitis and Vlahogianni [24] provide a nice discussion 

on the differences and similarities between statistical methods and 

neural networks and some insights for selecting the appropriate 

approach within the context of transportation research. 

 

Prediction of Pavement Condition and Performance 

 

The presence of undesirable crack, rut, and ride conditions 

determine the overall pavement surface condition which is generally 

associated with an index such as the International Roughness Index 

(IRI), pavement condition rating (PCR), etc. Neural networks have 

been found to be very powerful and versatile computational tools 

for determining and predicting the future condition and performance 

of the existing pavement systems. 

Attoh-Okine [25] applied a back-propagation type NN to develop 

a pavement roughness progression model. A neural network model 

was trained using synthetically generated roughness data with an 

empirical simulation model which accounted for several influencing 

factors such as pavement structural deformation, incremental traffic 

loadings, extent of cracking and thickness of surface layer, 

incremental variation of rut depth, surface defects such as patching 

and potholes, and environmental and other non-traffic-related 

variables such as road age. The NN prediction results were found to 

be more satisfactory when the pavement condition database 

considered was large enough. However, it was reported that NN 

model may not produce as good results with real data sets as it gave 

for the simulated data set. Chou et al. [26] used the fuzzy 

enhancement algorithm, the thresholding based on the maximum 

fuzzy entropy, the moment invariant features, and the neural 

networks successfully to classify pavement cracks. 

A NN system for the condition rating of rigid pavements was 

developed and implemented by Eldin and Senouci [27]. The Oregon 

State DOT condition rating scheme, based on the cracking and 

rutting indices, was used as the basis for the development of NN 

models. A backpropagation neural network with one hidden layer 

was used in this study consisting of 15 inputs corresponding to 15 

distresses and the output was a pavement condition index ranging 

between 0.1 and 0.5. The proposed NN model showed good 

generalization capability and unlike the Oregon State DOT 

condition rating model, the NN also showed a good fault-tolerance 

capability at high level of noise. A more comprehensive model with 

22 input nodes was also developed [28]. In a related study, Eldin 

and Senouci [29] also presented a successful application of 

feed-forward NN for the condition rating of flexible pavements. 

Attoh-Okine [30] employed NN to predict the area of indexed 

cracks in flexible pavements based on modified structural number, 

incremental traffic loadings, and environmental mechanisms. The 

performance of non-overlaid thick asphalt pavements having a 

thickness of more than 152.4 mm (6 in.) was studied by 

Owusu-Ababio [31] using NN. The pavement condition, represented 

by the Pavement Distress Index (PDI), was predicted based on the 

pavement surface thickness, pavement age, traffic level, base 

thickness, and roadbed condition. The author reported that the NN 

model outperformed the multiple-linear regression (MLR) model in 

terms of the standard error and the coefficient of multiple 

determination (R2). 

In another study, Owusu-Ababio [32] investigated the effect of 

the neural network architecture on flexible pavement cracking 

prediction. The author concluded that a MLP-BP network with one 

hidden layer may be sufficient to satisfactorily predict the cracking 

in flexible pavements based on pavement surface thickness, 

pavement surface age, and equivalent single axle load. 

Van der Gryp et al. [33] introduced a one-hidden layer 

feed-forward NN model to estimate the overall pavement condition 

based on the visual condition index (VCI) that ranges from 0 to 10, 

where 0 indicates worst and 10 indicates excellent pavement surface 

condition. The analysis was based on the severity and extent of 

various types of distresses including failure, surface cracks, 

longitudinal cracks, transverse cracks, patching, potholes, bleeding, 

and pumping. The reported simulations made it difficult to conclude 

on the effectiveness of the NN. 

George at al. [34] developed NN models to estimate the 

Pavement Condition Rating (PCR) index of flexible, rigid, as well 

as composite pavements based on Mississippi DOT database. 

Attoh-Okine [35] used real pavement condition and traffic data from 

Kansas DOT to investigate the effect of learning rate and 

momentum term (in backpropagation algorithm neural network) on 

flexible pavement performance prediction. Rutting, faulting, 

transverse cracking, block cracking, and equivalent axle loads were 

used as input variables in this study to predict the International 

Roughness Index (IRI). Based on the study findings, the author 

Activation

Input 
Layer

Hidden
Layers

Output 
Layer

Error(3)

h11 h12
h13

h21 h22
h23

Error(1)

Back-Propagation BP

..(h2j)

..(h1i)

Inp 1
Input 
Layer

Hidden
Layers

Output 
Layer

Error(3)

h11 h12
h13

h21 h22
h23

Error(1)

}
-

..

Inp 2 inp 3 Inp n

Out



Ceylan, Bayrak, and Gopalakrishnan 

Vol.7 No.6 Nov. 2014                                              International Journal of Pavement Research and Technology  437 

suggested that a learning rate (η) of around 0.2 to 0.5 and a 

momentum (α) magnitude of around 0.4 to 0.5 seem to provide the 

best combination for the pavement performance prediction. 

Shekharan [36] demonstrated the use of NN for condition 

prediction of five different types of pavements: original flexible, 

overlaid flexible, composite, jointed, and continuously reinforced 

concrete pavements (CRCP). A hybrid Genetic Adaptive Neural 

Network Training (GNNT) algorithm was employed to predict PCR 

based on pavement structure, history, and traffic volume inputs. 

Attoh-Okine [37] used NN self-organizing maps for the grouping of 

pavement condition variables in developing pavement performance 

models for prediction and evaluation purposes. 

Lin et al. [38] developed a MLP-BP NN (14 input nodes, 2 

hidden layers with 6 nodes each, and one output node) to predict IRI 

based on pavement distresses. Choi et al. [39] trained a 

backpropagation neural network algorithm to predict the 

performance of flexible pavements (IRI) using the Long Term 

Pavement Performance (LTPP) database. A hybrid NN-Finite 

Element Method (FEM) was employed by Gajewski and Sadowski 

[40] to investigate cracking behavior in asphalt pavements. 

 

Pavement Management and Maintenance Strategies 

 

Pavement management and maintenance issues must be considered 

very seriously in the selection of an economical treatment for 

rehabilitation of a deteriorated pavement section. In order to 

preserve or improve pavement condition, there are many 

maintenance and rehabilitation treatments that have to be carefully 

selected due to societal, environmental, and financial constraints. 

There are several articles summarized in this section in which the 

neural networks were utilized as a computational tool to decide 

which maintenance and rehabilitation actions should be performed 

on deteriorated pavement sections. 

Hajek et al. [41] compared two different techniques, rule-based 

system and neural networks, for selecting and recommending 

routing and sealing (R&S) maintenance treatments. There were 

about 40 different variables and factors such as width of cracks, 

crack type, pavement serviceability, pavement structure and age, 

raveling, flushing, and rutting influencing the R&S decisions. Fwa 

and Chan [42] investigated the feasibility of the using NNs for 

priority assessment of highway pavement maintenance needs 

concluded that the use of neural networks had several significant 

advantages over the aggregated condition index. 

Taha et al. [43] developed a hybrid NN-GA model for selecting 

the optimal maintenance strategy for flexible pavements and 

attributed the improvement in performance to hybridization. 

Flintsch et al. [44] developed and implemented NN models as part 

of an automatic procedure for preliminary screening and 

recommending roadway sections for pavement preservation at the 

Arizona DOT (ADOT).  

A combined NN-knowledge-based expert systems (KBES) 

approach was employed by Goh [45] for choosing proper 

rehabilitation schemes of deteriorated pavement sections. The 

effectiveness of the NN was not clearly demonstrated in this study. 

Alsugair and Al-Qudrah [46] developed NN models for determining 

the appropriate maintenance and repair (M&R) actions based on 

comprehensive visual inspection data from Riyadh road network in 

Saudi Arabia. 

Abdelrahim and George [47] used a genetic adaptive NN training 

(GANNT) algorithm with a single hidden layer to predict the 

optimum maintenance strategy based on realistic (noisy) data for the 

rehabilitation of a deteriorated pavement section. 

Sundin and Braban-Ledoux [48] summarize applications of NNs, 

fuzzy logic, GAs, KBES, and hybrid systems in pavement 

management. Karwa and Donnell [49] employed NN to model the 

degradation of pavement marking reflectivity as a function of initial 

reflectivity, age of the markings, traffic flow, pavement marking 

type, and route location information using data from North Carolina 

engineering districts. Josen [50] utilized NN for network-level 

pavement performance and management study in Connecticut using 

asphalt pavement cracking data. 

 

Pavement Distress Forecasting 

 

NN-based pavement distress forecasting models have been proposed 

as a cost-effective approach to accurately predict the future 

condition of a pavement section. Schwartz [51] developed NN 

models for forecasting the infrastructure condition of pavement 

sections as a function of time, current and historical condition, 

loading, inventory materials, and other data elements. Roberts and 

Attoh-Okine [52] developed and compared the results of two 

different NN types, a dot product NN (using backpropagation 

algorithm) and a quadratic function NN (a generalized adaptive 

feed-forward neural network that combined supervised and 

self-organizing learning), for predicting the IRI of PCC overlaid 

HMA, full-depth HMA, and partial-design HMA. The authors 

concluded that the quadratic function NN model performed better 

than the dot product NN model. 

Huang and Moore [53] used NN models (MLP-BP with one 

hidden layer) to predict the roughness distress level probability at 

some future time for flexible pavements. La Torre et al. [54] applied 

MLP-BP NNs to predict the IRI of flexible pavement sections for 

four years into the future. Sundin [55] predicted the progression of 

rut depth in road pavements using NNs. Two studies report 

development of NN models to forecast the pavement crack 

condition using the FDOT pavement condition database.  

Yang et al. [56] summarized the results of a research study to 

implement an overall pavement condition prediction methodology 

using NNs for Florida DOT (FDOT). Three individual NN models 

were trained and tested using the FDOT pavement condition 

database to predict the crack rating, ride rating, and the rut rating up 

to a future period of five years. Najjar and Felker [57] used dynamic 

NNs based on backpropagation algorithm to develop a 

time-dependent roughness (IRI) prediction model for newly 

constructed Jointed Plain Concrete Pavements (JPCP) in Kansas. 

The data were obtained from the Kansas pavement condition 

database. The authors suggested that it was imperative to annually 

update such a model based on newly acquired data. 

Saghafi et al. [58] were able to predict faulting in jointed concrete 

pavements using NN by considering base layer conditions and 

pavement age. Thube [59] implemented a NN-based pavement 

condition prediction methodology to forecast cracking, raveling, 

rutting and roughness for Low Volume Roads (LVR) in India. 
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Structural Evaluation of Pavement Systems 

 

Several studies report use of NN for predicting the elastic moduli, 

layer thicknesses, coefficient of subgrade reaction, and shear wave 

velocities of the pavement layers, and pavement surface deflections. 

Attoh-Okine [60] used a MLP-BP NN to interpret the Ground 

Penetrating Radar (GPR) thickness profile output from 

non-destructive pavement thickness and structure surveys. Heiler et 

al. [61] employed NNs for automatic detection of asphalt thickness 

and depth to reinforcement in composite pavements from GPR data. 

Williams and Gucunski [62] developed MLP-BP and general 

regression NN models to predict the elastic moduli and layer 

thicknesses of pavements from the 

Spectral-Analysis-of-Surface-Waves (SASW) test results. With the 

same objective, Gucunski and Krstic [63] trained two sets of NN 

models, one on the basis of the average dispersion curve and the 

other based on the individual receiver spacing dispersion curve 

approach. The results showed that both models were capable of 

predicting the shear wave velocities and thicknesses of all the layers 

with high accuracy, except the thickness of the subbase, d3.  

Meier and Rix [64] were the first to develop a NN-based layered 

elastic analysis (LEA) approach for backcalculation of pavement 

layer moduli from falling weight deflectometer (FWD) deflection 

basins. The developed NN models were 1,500 to 2,200 times faster 

than the conventional backcalculation algorithmic programs in use 

at that time. In another study, Meier et al. [65] augmented the 

WESDEF backcalculation program with trained NN models to 

compute pavement surface deflections as function of pavement 

layer moduli for a wide range of three-layered flexible pavements. 

The authors noted that the NN-augmented WESDEF can 

successfully backcalculate pavement layer moduli 42 times faster 

than it did before.  

Khazanovich and Roesler [66] implemented a NN-based 

backcalculation computer program (called as DIPLOBACK) for 

three-layered HMA overlaid PCC pavements. The DIPLOMAT 

forward model [67] was used to generate the theoretical deflection 

basins which were used in training the DIPLOBACK NN models. 

 

 

 
Fig. 3. Schematic of Neural Network Based Global Optimization 

Approach for Backcalculation of Pavement Layer Moduli [68]. 

Kim and Kim [68] used Hankel transforms as a forward model 

and NNs as inverse model for the prediction of layer moduli from 

FWD test data and surface wave measurements.  

Several studies have reported on the ability of NNs to compute 

surface deflections as well as lateral and longitudinal tensile stresses 

at the bottom of jointed concrete airfield pavements as a function of 

type, level, and location of the applied gear load, slab thickness, slab 

modulus, subgrade support, pavement temperature gradient, and the 

load transfer efficiencies of the joints [3, 70, 71]. The training sets 

were developed using the ILLI-SLAB finite element program for 

prescribed gear and temperature loads. Fig. 1 displays the accuracy 

of best-performance NN architecture in predicting the critical 

pavement responses under the simultaneous aircraft and temperature 

loading [71]. 

The use of NNs for rapid backcalculation of non-linear, 

stress-dependent pavement layer moduli and forward calculation of 

critical pavement responses based on Finite Element (FE) based 

ILLI-PAVE synthetic database was demonstrated by Ceylan et al. 

[72] for highway flexible pavements with unbound aggregate layers, 

by Ceylan et al. [73] for full-depth asphalt pavements and by 

Gopalakrishnan and Thompson [74] for airport flexible pavements. 

Fig. 2 displays the prediction performance of NN model at 10,000 

learning cycles [72]. Fig. 3 shows the comparison of results from 

FE-based regression algorithms and NN predictions. Similar 

NN-based backcalculation studies have been reported with changes 

in the forward model employed [75-77], dataset used [78, 79], 

pavement type [80], as well as hybridization of NN-based surrogate 

forward pavement response model with Genetic Algorithms (GAs) 

[81-84], Particle Swarm Optimization (PSO) [69], Co-variance 

Matrix Adaptation Evolution Strategy (CMAES) [85, 86], and 

Shuffled Complex Evolution (SCE) [87, 88], etc. A schematic of the 

NN based stochastic global optimization hybrid approach proposed 

by Gopalakrishnan [87] for pavement backcaculation is depicted in 

Fig. 3. Tarawneh and Nazzal [89] employed NN to optimize the 

prediction of subgrade resilient modulus design input from FWD 

test results. More recently, Gopalakrishnan et al. [90] attempted to 

backcalculate the asphalt concrete dynamic modulus master curve 

coefficients from FWD deflection-time history data. 

The rapid prediction ability of the NN backcalculation models 

makes them perfect evaluation tools for analyzing the FWD 

deflection data, and thus assessing the condition of the pavement 

sections, in real time for both project specific and network level 

FWD testing. The efforts of the authors and their colleagues have 

resulted in a suite of NN-based pavement layer backcalculation 

models for flexible, rigid, and composite pavements, referred to as 

I-BACK, which is currently being used on a routine basis at the 

Iowa Department of Transportation (DOT) [91]. A screenshot of the 

Excel-based I-BACK pavement backcalculation software tool is 

shown in Fig. 4. 

 

Pavement Distress Image Analysis/Classification 

 

Quantification of pavement crack data is one of the most important 

criteria in determining optimum pavement maintenance strategies. 

Over the years, a significant amount of effort has been spent on 

developing methods to objectively evaluate the condition of 

pavements. In this section, various studies reporting the application 
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of NNs for classification of cracks from digital pavement images are 

summarized. 

Kaseko and Ritchie [92] employed MLP-BP NN to segment and 

classify 8-bit grayscale pavement digital images collected using the 

ROADRECON instrumentation vehicle. The authors used mean, 

standard deviation of gray scale level histogram of the image and a 

co-occurrence parameter as input variables. The threshold value was 

assumed as the output of the NN model and images were classified 

into four different categories according to the nature of cracks: 

―transverse‖, ―longitudinal‖, ―alligator‖, and ―block cracking‖.  

Kaseko et al. [93] developed a NN-based methodology for 

processing video images for automated detection, classification, and 

quantification of cracking on pavement surfaces and compared the 

performance of NN classifiers with those of Bayesian and 

k-nearest-neighbor classifiers. The authors were able to demonstrate 

that the NN classifiers had a significant advantage in real-time 

applications with high computation rates required in 

pattern-recognition problems. 

The classification of pavement distresses from digital images 

using the radial basis function (RBF) NN was investigated by 

Nallamothu and Wang [94]. Cheng et al. [95] presented an approach 

to pavement cracking detection based on NN and CVPRIP 

(computer vision, pattern recognition, and image processing) 

techniques. This approach is based on the assumption that the crack 

pixels in pavement images are darker than their surroundings and 

crack pixels can be separated from the background using the 

threshold approach.  

Lee and Lee [96] developed an integrated NN based crack 

imaging system to classify crack types of digital pavement images. 

Three different types of neural networks were used in the analyses: 

image-based neural network (INN), histogram-based neural network 

(HNN), and proximity-based neural network (PNN). Based on the 

analysis, the authors concluded that the proximity-based neural 

networks produced results with a very high success rate. All 

NN-based models achieved a high accuracy of 95% or higher for the 

training sets and relatively low accuracy of 70% or higher for the 

testing sets. Salari et al. [97] used NN in designing an image 

processing based pavement inspection system for the assessment of 

highway surface conditions. An expert system based on wavelet 

transform and radon neural network (WRNN) was proposed by 

Nejad and Zakeri [98] for classification of pavement distresses from 

images.  

 

Other Miscellaneous Pavement Applications 

 

Other NN related applications in pavement engineering are 

summarized in this section. Owusu-Ababio [99] presented a NN 

model for predicting skid resistance on flexible pavements 

containing no overlays for assessing the future rehabilitation needs 

for the Connecticut DOT pavement performance study results were 

used in the study. The pavement age, the location, the accumulated 

average annual daily traffic, and the posted speed limit were the four 

input variables and the skid number was the output variable. The 

results of the NN model and regression models were compared. 

Wang [100] investigated the feasibility of using a specially 

designed and programmable neural net chip, Ni1000, in a PC to 

conduct real-time processing for pavement surface distress survey. 

Faghri and Hua [101] tried to predict the average annual daily traffic 

(AADT) using NN as a function of seasonal factors, 48 hours traffic 

counts, annual traffic pattern, and road attributes. Ioannides et al. 

[102] used MLP-BP NN for assessing the deflection and stress load 

transfer efficiencies of concrete pavement joints and for 

backcalculating joint parameters. 

 

 
Fig. 4. Screenshot of Excel-based I-BACK Neural Networks Pavement Backcalculation Software Tool. 
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Other miscellaneous pavement applications involving the use of 

NN have also been reported by Dougherity [5] and Adeli [4]. Banan 

and Hjelmstad [103] re-examined the AASHO road test data using a 

Monte Carlo Hierarchical Adaptive Random Partitioning 

(MC-HARP) based NN approach. Mei et al. [104] developed a NN 

model to estimate the load related shallow crack depths and 

surface-initiated fatigue cracks in asphalt pavements based on 

crack-surface geometry and pavement and traffic characteristics. 

Ceylan et al. [105] and Wu et al. [106] employed the NN 

methodology to model the stress growth in asphalt concrete overlays 

due to load and thermal effects which substantially reduced the 

overall computer run time for a 20-year reflection cracking 

prediction of a typical overlay.  

 

Summary 

 

Neural Network (NN) models are useful complements to 

more-traditional numerical and statistical methods such as 

regression. Once fully trained or developed, NNs provide engineers 

with sophisticated, real time analysis and prediction tools with no 

complex analysis input requirements, such as those of finite element 

numerical solution techniques, and no large computer resources 

needed. They do not provide ―a priori‖ function such as one 

generated by regression analysis, yet, they are not meant to be 

―black boxes‖ for practitioners either. NNs commonly outperform 

their traditional modeling counterparts in solving complex 

engineering problems.  

NN modeling has shown great promise as a useful and 

nontraditional computing tool for analyzing too complex, non-linear 

problems inherent to pavement engineering. NNs have the potential 

to investigate, properly model and, as a result, better understand 

some of the complex pavement engineering mechanisms that have 

not been well understood and formulated yet. This is especially 

possible with the vastly powerful and nonlinear interconnections 

provided in the network architecture that enables an NN to even 

model very sophisticated finite element method numerical solutions 

as the state-of-the-art pavement structural analysis results. As an 

example, the Mechanistic-Empirical Pavement Design Guide 

(MEPDG) utilizes an NN model to analyze rigid concrete 

pavements and solve for concrete pavement critical responses under 

environmental and traffic loading conditions. 

Several successful NN applications were reviewed in this paper 

for solving various pavement engineering problems in the areas of 

prediction of pavement performance and condition, pavement 

management and maintenance strategies, pavement distress 

forecasting, pavement structural evaluations, pavement distress 

image analysis and classification. Most of the studies reported in 

this regard utilized the backpropagation type neural network models, 

which is one of the most common NN models. Backpropagation 

NNs are indeed very powerful and versatile networks that can be 

taught a mapping from one data space to another using a 

representative set of pattern/examples to be learned. NN models 

were also noted to be able to rapidly present the required solutions 

by analyzing the pavement data in real time. This aspect becomes 

especially important in data collection and processing in real time 

for pavement condition and performance studies.  

The use of NN in pavement engineering has significantly 

increased in the past twenty years. An issue that needs some 

attention in the future development of NNs is to include treatment of 

uncertainties associated with pavement engineering parameters. 

More recently, hybrid NN approaches, in combination with global 

optimization techniques or other machine learning techniques, have 

become popular in addressing complex pavement engineering issues. 

One of the main motivations for this paper is to enable the use of 

NN more widespread and common among both researchers and 

practitioners in the field of pavement engineering. Overall, despite 

the limitations of NNs, they have a number of significant benefits 

that make them a powerful and practical tool for solving many 

problems in the field of pavement/geotechnical engineering. 
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