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─────────────────────────────────────────────────────── 

Abstract: The analysis of stresses, strains and deflections in rigid pavement is an important step in the mechanistic pavement design of 

new pavements and rehabilitation design of existing pavements. However rigid pavements are complex structures to analyze utilizing 

closed form solutions. In order to simulate actual traffic loading cases and realistic pavement structures a finite element analysis is needed. 

However, in order to perform finite element analysis for different axle load configurations to analyze pavement damage using traffic 

spectra, it will require a great amount of time for each design option. In addition, using finite element analysis will require special 

expertise and software which might not be available in many highway departments of transportation. In this research, the outputs of finite 

element analysis for multiple axle load configurations, rigid pavement structures and material properties were used to train an artificial 

neural network to predict stresses and deflections in rigid pavement with great accuracy. The fully trained artificial network can be used 

to predict principal and normal stresses and deflections with reasonable accuracy with a mean squared error of 0.002. The artificial neural 

network can be used in any mechanistic empirical pavement design procedure to replace chart solutions or lengthy finite element analysis. 
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To analyze the complex rigid pavements structure, finite element 

analysis will provide the most accurate solution. The finite element 

methods have come to prominence in complex structures such as 

rigid pavements due to their ability to accurately model different 

axle configurations and complex boundary conditions.  However, 

for the purpose of mechanistic empirical design, the design will 

require several iterations and analysis for multiple axle loads which 

will require long time to achieve the optimum design. One solution 

to this issue is to develop and train an artificial neural network that 

would instantly predict the rigid pavement responses to axle loads in 

very short time. The closed form solution provided by Westergaard 

is very simplistic and cannot model complex rigid pavement 

structure with multiple axle loads [1]. This is because the equations 

provide maximum values that are location independent and 

therefore superposition of different results will not produce accurate 

values. In most rigid pavements, slabs are connected with dowel 

bars which are embedded in both slabs for load transfer between 

adjoining slabs. The closed form solutions have no way of modeling 

how the load is transferred and therefore the corner and mid edge 

equations are no longer applicable. 

Artificial neural networks have been successfully used in many 

engineering problems.  Lacroix et al., Coleri et al. and Far et al. 

developed an artificial neural network to predict the dynamic 

modulus of asphaltic concrete [2-4]. The neural network proved to 

be more accurate at predicting the dynamic modulus compared to 
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the modified Witczak model. The authors attributed the better 

quality of prediction of the artificial neural network to the fact that 

the neural network can model the complex relationships between the 

resilient and the dynamic moduli whereas the modified Witczak 

model uses component material properties to model the relationship 

[2]. 

In all three studies, the coefficient of determination for the neural 

network was above 0.9 and this is compared to 0.8 for the modified 

Witczak model [2-4]. Both the neural network and modified 

Witczak model had shown an increase in the spread as the dynamic 

modulus increased, but this disappeared for the neural network 

when a log-log scale was used. The log-log scale showed the 

modified Witczak model had a similar spread to the neural network 

but it was not accurate as it overestimated the higher moduli.  Kim 

et al. developed an artificial neural network for maintenance and 

rehabilitation project selections using pavement preservation plans 

and pavement condition data for the TxDOT [5]. The authors used 

maintenance and rehabilitation data collected over four years in 

addition to other relevant data extracted from the TxDOT Pavement 

Management Information System. In this study, 80% of data were 

used for training and the remaining 20% was used for testing and 

validation. 

Mirzahosseini et al. investigated the applicability of using 

artificial neural network for the prediction of the rutting potential by 

predicting the flow number [6]. The authors used several asphalt 

mix parameters such as percentage of coarse aggregates, bitumen 

content, air voids content and percentage of voids in the mineral 

aggregates as input parameters that correlate with rutting. The 

authors found that the ANN accurately characterized the flow 

number and remarkably outperforms several existing prediction 

models for the flow number of asphalt mixes. 

With the advance in the computing power, numerical methods are 

becoming popular in all areas of engineering, especially where 

simplistic analytical solutions are no longer acceptable. In this 
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research paper, different loading combinations, layer moduli and 

pavement composition will be modeled by finite elements and the 

outputs are used to train and validate an artificial neural network. 

 

Finite Elements Analysis 

 

In this research, the slab and base layers are modeled with 20 node 

brick elements and are treated as linearly elastic and isotropic 

material. The elements are rectilinear and the same divisions are 

used in the base as in the slab to ensure their compatibility. Only 

linear strains can be accurately modeled across this element. 

The interface between the slab and the uppermost base layer is 

modeled by a 16 node, zero thickness quadratic interface elements. 

This model is used to model the shear transfer at the slab-base 

interface and the relationship is assumed to be elastic-plastic with 

the ultimate stress and yield strain specified.  An eight node 

element is used to model the dense liquid foundation and it can 

support tension or be tensionless. Standard quadratic shape 

functions are used to interpolate vertical displacements that are 

compatible with the 20-node brick element. 

The accuracy of the finite element analyses depends on how fine 

the mesh used to solve the problem. The smaller the elements, the 

more likely the solution approaches the true result but the time to 

run the analysis increases as well. In order to ensure the solution is 

accurate several iterations has been made in which, the element size 

was reduced to half the elements size of the previous iteration and 

the analysis was compared between successive runs. When the 

solution has only varied by less than around 1.0% then the pervious 

solution is accurate enough. 

 

Methodology 

 

Description of Artificial Neural Network 

 

A neural network is comprised of three main parts; inputs, an output 

layer and at least one hidden layer. The hidden and output layers are 

made up of neurons which receive an input from every neuron in the 

preceding layer multiplied by a weight and then summed. A bias is 

then added to the sum and the result is now passed on to every 

neuron in the following layer through a transfer function as shown 

in Fig. 1. The transfer functions can range from piece-wise to linear 

to sigmoidal. 

When a neural network is being used to model multivariate 

nonlinear relationships, multiple hidden layers are normally needed. 

A network can be simplified to a single hidden layer without any 

loss in accuracy if linear transfer functions are used for all the 

neurons in a multi-layered network. This explains why the transfer 

functions on hidden neurons are typically sigmoid in nature. A wide 

range of training data is needed because a sigmoidal function has 

asymptotes and as such cannot extrapolate beyond that range [2]. A 

neural network at its most basic is a group of linear relationships 

being added together to model a nonlinear one. 

 

Axle Load Configurations and Pavement Geometry 

 

Eight different variables were chosen to be inputs into the neural 

network with a maximum of three levels for each variable as shown 

 
Fig. 1. Visual Representation of a Neuron in an Artificial Neural 

Network. 

 

Table 1. Pavement Structure Properties and Axle Load 

Configurations Considered in the Finite Element Simulation. 

 

Single Axle-Dual Axle  

Tandem Axle-Dual Axle 

Tridem Axle- Dual Axle 

Axle  Load (kN) 

20 50 120 

40 100 190 

80 13 250 

Load Position Edge Corner  

Tire Pressure (kPa) 650 750  

Modulus of Subgrade Reaction 

(MPa/mm) 

0.027 0.054 0.081 

Base Course Thickness (mm) 200 300  

Base Course Modulus (MPa) 350 1000  

 

in Table 1. This small number of options was used to ensure a 

manageable number of cases were produced. The load cases were 

comprised of every possible combination of the input options. 

The neural network input variables were chosen because they 

would have the most significant effect on the pavement response 

and also they corresponded to the likely geometries and loading 

conditions that engineers would want to analyze. The outputs to be 

predicted were the most likely to govern the design of rigid 

pavements and they are: 

1. Maximum principal stresses 

2. Maximum slab deflection 

3. Maximum Horizontal Stress in X direction (xx) 

4. Maximum Horizontal Stress in Direction (yy) 

5. Maximum Shear Stress in XY plane (xy) 

6. Maximum Shear Stress in YZ plane (xz) 

Three axle configurations (Single axle-dual tire, tandem axle-dual 

tire and tridem axle-dual tire) were modeled in the finite element 

simulations. These axle loads represent the most common axles in 

the traffic spectrum. The axle loads were chosen to represent the 

average, upper and lower bound values for each configuration as 

stated in the New Zealand and Australian guidelines [7]. Two tire 

pressures (650 and 750 kPa) were considered in the analysis. The 

modulus of the subgrade reaction is used to model the subgrade 

stiffness. In this simulations, three types of subgrades: weak, 

moderate and strong were considered with the modulus of subgrade 
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values 0.271, 0.0543 and 0.0814, respectively.  Three slab 

thicknesses were considered in the finite elements simulation 200, 

250 and 300 mm to represent thin, moderate and thick slabs 

respectively. Concrete slab properties were considered constant 

during the analysis in which the concrete modulus and Poisson ratio 

were assumed 28 GPa and 0.2, respectively. Two base course 

thicknesses were also considered 200 and 300 mm. The bases 

course moduli ranges from 350 MPa to 1000 MPa to represent 

unbound granular base and cement stabilized bases courses 

respectively. Total number of analysis combinations used equals 

3*3*2*3*2*3*2*2=1296 combinations. 

 

Slab Geometry and Loading Positions 

 

The slab used in the finite element analysis was assumed to be 10 m 

long and 4.5 m wide. These values were used because 10 m is a 

typical length for a rigid pavement slab and 4.5 m accounts for 3.5 

m lane and one meter of integrated shoulder. Three loading 

scenarios were considered to attain the worst stresses, strains and 

deflections. The edge and corner loading positions are the most 

critical loading locations as they produce the worst stresses and 

strains at the edge of the slab with the worst deflection is at the 

corner. Fig. 2 shows the mid span location near the edge loading. 

 

Finite Element Results 

 

All of the finite element analysis has been done using EverFE2.25 

software; it was developed by the Universities of Maine and 

Washington [8]. EverFE2.25 has a simple graphic user interface that 

allows all model changes to be seen as they are applied. The 

software also allows complex slab geometries, load configurations, 

multi-layered foundations dowel-slab interactions and up to 

tri-linear temperature gradients through the slab. In order to get the 

required accuracy from the finite element analyses, a test case was 

used to determine how small the elements needed to be. This 

process involved reducing the element size until there was only a 

very small change, less than 1%, in the stresses and deflections. This 

element density was then used for all of the finite element analyses 

performed. 

 

Network Training 

 

In order for a neural network to most accurately model the given 

situation, it must be trained. During training, the weights and bias 

are updated based on how big the difference is between the target 

data and the current neural network prediction output. All of the 

neural network creation and training was done using MATLAB 

2010b. 

 

Selection of Optimal Weights 

 

A neural network can be trained well enough that it will give nearly 

exact answers for the provided training data but in this case it will 

have a poor generalization capabilities [3]. This can be prevented by 

having a second set of data, a validation set of data that after each 

training step is put through the network and its mean squared error, 

MSE, found. As training progresses the MSE of both the training 

and validation data set decrease but whereas the training MSE will 

continue to decrease the validation MSE reach a minimum [9]. This 

minimum is reached when the network is at its optimal point to 

predict new cases. 

It should be noted that over training of the artificial neural 

network will result in the network being very good at predicting the 

training cases but it will be very poor at predicting new cases. If 

training was allowed to continue then the neural network would be 

over fitted and this would result in the network very accurately 

predicting the training cases but would be very poor at predicting 

new cases. 

 

Network Architecture Selection 

 

As stated above there will be many outputs needed from the neural 

network and because of this the network will be large. In order to 

combat this problem, each output could have its own small neural 

network or the outputs could be split into smaller related categories 

with each category having a network. 

Having a network with two or more output variables may result in 

difficultly during the learning process. This is because the neurons 

are trying to model multiple relationships at once. This can become 

a problem if one or more of the relationships are dominate over the 

rest. If this problem does occur the best solution is to create many 

networks with one output variable each and later combine them into 

a one large unit [10]. That makes the selection of the number of 

neuron in the output layer easy but it still leaves the problem of how 

 
Fig. 2. The Slab Geometry and Direction of Normal Stresses. 
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Table 2. The Mean Squared Error for the Top Ten Architectures and Their Respective Performance Criteria. 

ANN 

Architecture 
Overall Training Validation Testing 

Training Plus 

Testing 

Training Less 

Testing Sum of Ranks 

 

MSE MSE MSE MSE 

12:07 6.08 × 10-3 5.55 × 10-3 4.05 × 10-3 8.88 × 10-3 1.44 × 10-2 3.33 × 10-3 5849 

08:14:07 6.21 × 10-3 5.74 × 10-3 4.10 × 10-3 8.92 × 10-3 1.47 × 10-2 3.17 × 10-3 5851 

08:16:13 6.35 × 10-3 5.90 × 10-3 4.31 × 10-3 8.95 × 10-3 1.49 × 10-2 3.05 × 10-3 5932 

09:13 6.56 × 10-3 6.17 × 10-3 4.49 × 10-3 8.98 × 10-3 1.51 × 10-2 2.80 × 10-3 5937 

11:09:13 6.46 × 10-3 6.04 × 10-3 4.44 × 10-3 8.98 × 10-3 1.50 × 10-2 2.94 × 10-3 5957 

08:15:14 6.25 × 10-3 5.78 × 10-3 4.09 × 10-3 8.96 × 10-3 1.47 × 10-2 3.18 × 10-3 5962 

07:20:08 6.75 × 10-3 6.38 × 10-3 4.89 × 10-3 8.99 × 10-3 1.54 × 10-2 2.61 × 10-3 5992 

12:13:14 6.02 × 10-3 5.45 × 10-3 3.99 × 10-3 8.93 × 10-3 1.44 × 10-2 3.48 × 10-3 6005 

10:11:15 6.29 × 10-3 5.81 × 10-3 4.19 × 10-3 8.99 × 10-3 1.48 × 10-2 3.17 × 10-3 6013 

14:10:10 6.67 × 10-3 6.25 × 10-3 4.85 × 10-3 9.02 × 10-3 1.53 × 10-2 2.77 × 10-3 6054 

 

many hidden layers are needed and the number of neuron in each 

layer. The method used in this paper was outlined by Manica et al. 

[11] and is stated below. 

This is done by selecting a range of network architectures and 

training each one multiple times. To ensure consistency of the 

training, the same training and validation data is used for all tests. 

Once each architecture has been optimized, the average mean 

squared error (MSE) for each training run is found for the training 

and validation data as well as the standard deviation. Once that has 

been done, a third data set, the testing set, is used to find the two 

performance criteria of the network, conforming and generalization 

capability. The conforming capability is given by the sum of the 

MSE for the training and testing data sets. Each architecture is given 

a rank of one, the best, to k, number of different architectures tried, 

based on increasing conforming capability. The generalization 

capability of a network is found by subtracting the training MSE 

from the testing MSE. The same ranking system is used to rank the 

generalization capability of the networks and the two ranks are then 

summed to get the total architecture ranking. The network 

architecture with the lowest rank is then chosen. 

Having a large number of neurons in a network can have the same 

effect as overtraining [3]. This is why all of the work cited here that 

relate to neural network use have no more than three hidden layers 

and twenty neurons per layer. This can help with the choosing which 

network architectures are worth trying and which can be discarded 

straight away. This method leads to a network that is good at 

providing accurate solutions to previously unseen problems and also 

one that accurately predicts problems that was presented during 

training. 

 

Results and Discussion 

 

Each Architecture was trained and tested ten times and the average 

of the mean squared errors was found and the performance criteria 

were calculated as outlined above. 

 

Architecture Selection 

 

A range of architectures were selected from a single neuron up to 

three layers of twenty neurons each and this resulted in 8420 

different network architectures being tried. Each architecture was 

trained ten times and the mean of the MSEs found and Table 2 

shows the results for the top ten ranked network layouts. The top ten 

network architectures all performed very well and this is shown by 

the fact that the top ten have a difference in rank of 205 whereas the 

ranks range from 5849 up to 16840. From this analysis, it was found 

that a network with a 12:7 architecture performed the best. A 12:7 

network architecture means that there will be two hidden layers with 

twelve neuron in the first layer and seven in the second. 

 

Network Performance 

 

The final network to be used was found by training the 12:7 

architecture 1000 times and the same performance criteria used in 

architecture selection was used here to pick the best trained network. 

The performance of the final network was calculated with respect to 

each output separately and the results were compared with the finite 

element simulation results. Fig. 3 shows the relationship between 

the artificial neural networked predicted principal stresses and the 

finite elements simulation results. It is clear from Fig. 3 that the 

predicated and calculated results lined up on the equality line with 

the MSE of 0.0012. 

Similarly, Figs. 4 to 6, compare the predicted maximum slab 

surface deflection, maximum horizontal stresses yy and xx with the 

finite elements simulated values. The predicted and calculated 

values matches each other very closely with the maximum mean 

squared of error (MSE) of 0.0021 MPa in the stresses in x direction 

as shown in Fig. 6. 

In general, the neural network performed well for the max 

principal stresses, normal stresses in X and Y planes, and maximum 

slab deflections with the largest MSE of the four outputs being 

0.0021 as shown in Figs. 3 to 6 and Table 3. This accuracy is also 

shown in the coefficient of determination between the data and the 

line of equality being very close to unity. 

The neural network did not perform as well when predicting the 

shear stress xy and yz with the mean squared error for the shear 

stress in XY plane and YZ plane being 0.028 and 0.0072, 

respectively. Figs. 7 and 8 show relationship between the predicted 

shear stresses xy and yz and the calculated shear stresses using the 

finite element simulations. The large errors for the shear stresses are 

part of the network and cannot be removed by further or repeated 

training. This is a result of the neural network trying to learn to 
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Fig. 3. ANN Predicted Versus Calculated Maximum Principal 

Stress. 

 
Fig. 4. ANN Predicted Versus Calculated Maximum Slab Deflection.

 

 
Fig. 5. ANN Predicted Versus Calculated Normal Stresses yy 

 
Fig. 6. ANN Predicted Versus Calculated Normal Stresses xx. 

 

Table 3. The Mean Squared Error and Coefficient of Determination for Each output of the Artificial Neural Network. 

 
Max Principal Stress Max Deflection X Plane Stress Y Plane Stress 

XY Plane Shear 

Stress 

YZ Plane Shear 

Stress 

Mean Squared Error 0.0012 0.0014 0.0021 0.0012 0.0228 0.0072 

Coefficient of Determination 0.9958 0.9953 0.9926 0.9875 0.8564 0.8668 

 

predict a large number of different patterns with different levels of 

dominance. During training the dominant patterns are learnt the 

fastest and other patterns that end up being modeled accurately are 

due to the patterns being similar in nature to the dominant ones. In 

this situation the patterns required to model the shear stresses are 

minor and as such would require a far more training than would 

produce a neural network that is both accurate and good at 

predicting unseen cases. In order to correct this, the shear stresses 

would need to have their own neural network where the patterns 

required to model them would be dominate. This would also have an 

added side effect of increasing the performance of the first neural 

network due to the removal of the minor patterns that had to be 

learnt. However, the shear stresses are not part of any current rigid 

pavement design and therefore limiting the artificial neural network 

for predicting deflections, normal and principal stresses will provide 

all the necessary responses for rigid pavement design and analysis. 
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Fig. 7. ANN Predicted Versus Calculated Shear Stresses xz. 

 
Fig. 8. ANN Predicted Versus Calculated Shear Stresses yz. 

 

Time Requirements 

 

Using the artificial neural network results in a very large decrease in 

the time taken to perform the analysis when compared to finite 

element analysis. This is due to the artificial neural network being 

able to predict a large number of cases in a very short time whereas 

with a finite element analysis will take a minimum of a minute for 

each case needing analysis. This will result in the designer being 

able to analyze a larger number of cases compared to finite element 

analysis and as such it is less likely that the critical case will be 

missed due to time constraints. 

It is also important to note that obtain accurate results all inputs 

must be within the range of the input data used in the training. On 

the other hand, using the neural network used outside the training 

data range will result in inaccurate results and therefore the 

extrapolation errors are made worse by the transfer function used to 

pass data between layers in the neural network. The tan sigmoid 

function, as shown in Fig. 9, has asymptotes at -1 and 1 which can 

result in very similar outputs for vastly different inputs. If the input 

values were to produce a large summation within the neuron then 

when the transfer function is applied a number very close to that 

outputted from vastly different inputs. The inaccuracies that result 

are inherent in the neural network and this is the reason why inputs 

outside the range of the training data can result in very inaccurate 

predictions. Before the data is passed to the neural network it is 

scaled to be between negative one and positive one based on the 

maximums from the training data. This helps to reduce the chances 

that a large summation within the neuron will occur. But it can still 

happen if inputs outside the range of the training data are used 

 

Conclusions 

 

The prediction of rigid pavement responses can accurately be 

predicted by finite element analysis.  However, to perform an 

analysis or design using traffic spectra and carry out damage 

analysis for each axle load for each pavement trial, it will take 

significant computational effort and time. In addition, practitioners 

Fig. 9. A Tan Sigmoid Transfer Function with the Data Point 

Labelled. 

 

in the pavement industry will not favor any analysis that will require 

specialized expertise such as finite elements analysis. An artificial 

neural network is a quick and easy alterative that does not require 

much expertise to achieve accurate results. The neural network 

proved to be very accurate at predicting the required outputs but it 

did fall short in predicting shear stresses. However, this will not be a 

problem as typically shear stresses are not required input for the 

current rigid design methods. 

Further research can be done on this topic to improve the 

accuracy of the artificial neural networks predictions and expand its 

capabilities so as to make it more attractive to practitioners. In order 

to do this, the finite element results would need to be verified 

experimentally so as to ensure the neural network has realistic data 

to predict. In addition, to improve the accuracy of the predictions, 

large number of training cases would be required and maybe several 

neural networks with a smaller number of outputs would be 

produced. The number of inputs could be expanded to include the 

slab size and modulus to make the neural network more versatile 

and as such more likely to be adopted by departments of 

transportations. 
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