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─────────────────────────────────────────────────────── 
Abstract: Low temperature performance of hot-applied bituminous crack sealant is a key factor which influences the effect of asphalt 
pavement crack filling and sealing. In order to describe the constitutive stress-strain relationship at low temperature, experimental tests of 
extension and stress relaxation of crack sealants, are presented in this paper. The generalized Maxwell model is chosen for curve-fitting to 
determine the material model. Comparison of fitted curve and experimental results proves that the generalized Maxwell model in Prony 
series is well suited for describing the experiment process. Moreover, finite element analysis method with material model defined by the 
generalized Maxwell model in Prony series is introduced for numerical solution of tension and stress-relaxation of crack sealants. By 
comparing the results of the numerical analysis and the tests, the conclusion can be made that the tension and the stress-relaxation of 
crack sealants may be accurately depicted by the generalized Maxwell model. 
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Introduction 12 

 
Crack sealing is considered one of the most cost-effective and 
frequently used maintenance techniques that may prolong the 
pavement service life. Crack sealing prevents the intrusion of water 
from penetrating into the pavement structure, hence, delays its 
deterioration. Over the life of the pavement, sealant should exhibit 
flexibility and extensibility at low service temperatures [1-2]. 
Hot-applied bituminous crack sealant is comprised of asphalt, 
rubber, extender oil, filler, and so on [3-4]. It may exhibit both 
viscous and elastic characteristics under deformation known as 
viscoelasticity. 

To evaluate field performance, current specifications for 
hot-applied sealants are developed by ASTM D5329 [5], which 
provide test methods for sealants. The bond test, as one of these 
methods, is used to evaluate low temperature performance of 
sealants. ASTM D6690 [6] provides physical requirements for 
different types of sealant. The specification for hot-applied sealants 
in China [7] is similar to ASTM specifications. However, the 
current ASTM specifications for hot-applied sealants are empirical 
and cannot accurately predict their field performance. In order to 
develop test methods based on the material’s rheological properties, 
numbers of experiments have been carried out to evaluate the low 
temperature performance of sealants, such as glass transition 
temperature, SHRP bending beam rheometer and direct tensile tester 
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[8-13]. 
Theory of viscoelasticity has been extensively studied for crack 

sealants under the stress relaxation tests. Using a Crack Sealant 
Bending Beam Rheometer, Elseifi [14] and Al-Qadi [15] developed 
a linear viscoelastic model to study the mechanical behavior of 
crack sealant at low service temperature. However, experimental 
study and numerical modeling of crack sealants during the process 
of constant strain rate loading and stress relaxation are seldom 
studied. This paper is focused on the experimental study and 
numerical simulation of crack sealants during the tension and the 
stress relaxation test. The generalized Maxwell model is chosen for 
curve-fitting to determine the material model. Finite element 
analysis method with material model defined by the generalized 
Maxwell model in Prony series is introduced for numerical solution 
of tension and stress-relaxation of crack sealants. By comparing the 
results of the numerical analysis and the tests, the tension and the 
stress-relaxation of crack sealants may be accurately depicted by the 
generalized Maxwell model. 

 
Experiment Process 
 
The test specimen, according to the bond test at low temperature of 
ASTM D5329 [5], is loaded under constant strain rate followed by 
stress relaxation. The test specimen is fastened with clamps and 
standing bolts, which are loaded through dowel steel (Fig. 1). The 
universal testing machine, combined with a cryogenic storage box 
and a computer, are used to measure the tensile stress. Crack sealant 
samples are stored in the cryogenic storage box for no less than 4 
hours and then loaded with constant strain rate (0.02/h) till 
25.6466% (labeled as sample 1) or 50% (labeled as sample 2) 
deformations take place. The time history of the stress is recorded 
afterwards, which means the experimental process is composed of 
two stages, namely the constant strain rate loading and the stress 
relaxation (Fig. 2). The temperature is kept at -30°C and the 
stress-time curves are automatically drawn by the computer. 
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Fig. 1. Schematic Diagram of Extension Test. 

 
Fig. 2. Experimental Procedure. 

 
Material Model 
 
Crack sealants are tested under a simply uniaxial tensile loading at 
low temperature (-30°C), during which the strain rate is as low as 
0.05 mm/min. As a result, the material model of crack sealants may 
be assumed to be small strain for each load step. At the end of the 
experiment procedure, 50% of the total deformation is achieved, 
which may be described by a large deformation process. In view of 
these two points, the theory of large deformation and small strain 
may be used for the material model of crack sealants under the 
constant strain rate loading and the stress relaxation. The standard 
linear solid model and the generalized Maxwell model are used for 
the description of the stress time history of crack sealants. 

 
Prony Series [16] 
 
Elastic modulus may be written in the form of Prony series, which is 
given by 

     (1) 

where i represents the index of summation, k is the upper bound of 
summation, time dimension is denoted as t, elastic modulus is 
time-dependent and denoted as E(t), and E(∞) is the long-term 
elastic modulus when the material is totally relaxed and αi is the 
relative modulus given by 

   (2) 

Temperature effect on the relative modulus αi and the relaxation 
time τi is assumed to be negligible since temperature is kept 
constant during the experiment procedure. The following 
conclusions may be drawn from Eq. (1). 
 The material is thought to be purely elastic as time approaches 

zero. In this case, the elastic modulus may be initially evaluated 
by 

    (3) 

 The elastic modulus is E(∞) and the material is thought to be 
near fluid as time approaches infinity. 

 
Constitutive Relationship 
 
The constitutive relationship may be formulated as [16] 

    (4) 

where σ is stress, ε0 is the strain at the initial time point. Eq. (4), 
written in the form of Prony series, may be recast into 

(5) 

Eq. (4) or Eq. (5) may be solved in accordance with the 
experiment steps shown in Fig. 3, namely constant strain rate 
loading and stress relaxation. 

 
Constant Strain Rate Loading 
 
The experimental sample is loaded under constant strain rate and Eq. 
(4) with zero initial strain may be solved by 

   (6) 

where a dot over the strain ε means the strain rate. The 
multiplication of two variables in the right-hand side of Eq. (6) may 
result in some divergent problems in case of curve-fitting. As a 
result, the viscosity coefficients are introduced here as 

   (7) 

Substituted by Eq. (7), Eq. (6) may be expressed as 

   (8) 

The equation above is used for curve fitting to determine the 
unknown coefficients in Eq. (8) such as E(∞), ηi and τi, which are 
2k+1 in total numbers and may be approximated by the curve-fitting  
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Fig. 3. Generalized Maxwell Model. 
 
method. Two cases for the number of Maxwell elements in Fig. 4 
are studied. 

  
Stress Relaxation 
 
At the second stage of the experiment, the stress relaxation of the 
sample is studied. The constitutive relationship, defined by Eq. (4) 
with the initial strain ε0 at time t0, may be recalculated by 

    (9) 

where the initial stress σ0 at t0 is 

          (10) 

Therefore, 

   (11) 

Eq. (9), substituted by Eq. (11), may be reformulated as 

     (12) 

Two cases are examined for the number of Maxwell elements in 
Fig. 4. 

 
Curve Fitting 
 
The material model in Prony series as Eq. (5) is chosen for 
curve-fitting and the method of least squares is used to minimize the 
sum of the squared errors, which are defined by the difference 
between the experiment results [σ]j for the uniaxial stress and the 
solution σj predicted by the theoretical model as Eq. (5). The fitting 
procedure starts from minimizing the sum of the squares of the 
deviations f given by 

   (13) 

where E(∞) is the long-term elastic modulus when the material is 
totally relaxed, [σ]j is the experimental stress, m is the number of 
the experiment data set. The unknown coefficients, E(∞), ηi and τi, 

 
Fig. 4. Stress σ of the Sample Loaded to 50% Deformation for the 
Standard Linear Solid Models. 
 
may be approximated by the following equations 

                                                     
(14)

 

where the residuals are denoted by R1, R2i and R3i. The nonlinear 
equations listed above, totally 2k+1, may be iteratively solved with 
the function 'lsqcurvefit' provided by the software MATLAB 
R2011b. The obtained coefficients with the curve-fitting method 
(lsqcurvefit) may best fit the material model of Eq. (5) to the 
experiment data, although these coefficients are not unique and even 
result in an incorrect physical interpretation of elastic modulus 
because negative values are possible. These unknown coefficients, 
therefore, are bounded to be positive. And the initial trial values 
affect greatly the solutions to these unknowns, which may tend to be 
unreasonably infinite if the initial trial values are far away from the 
real solutions. The initial trial values are chosen to insure that the 
elastic modulus, the magnitude of which may be approximated by 
the quotient of the stress and the strain, is finite and positive. In this 
way, the unknown coefficients are iteratively solved in Eq. (14). 

The continuity of curves requires that Eq. (8) and Eq. (9) satisfy 
the following conditions 

    (15) 

Therefore, 

   (16) 

The equation above represents the continuity condition of the 
fitted curves. 

 
Standard Linear Solid Models 
 
The fitting functions are defined by the standard linear solid models 
in Prony series listed in Table 1 during the constant strain rate 
loading and the stress relaxation, which may be written as: 
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Table 1. The Standard Linear Solid Models and the Solution to the Stress Tensor. 

Schematic Model 

  

Stress-strain Relationship 
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(17) 

The goal is to find three unknown parameters, E(∞), η1 and τ1. 
The fitting functions are defined by the standard linear solid models 
expressed by Eq. (12). The piecewise curve-fitting method is used, 
with which the load steps, the constant strain rate loading and the 
stress relaxation are fitted separately. The errors are calculated in 
each single load step. Accordingly, the corresponding coefficients 
are obtained. The starting trial values are evaluated by the initial 
elastic modulus, which are given by: 

( ) 1,0 1,00
100 [kPa], 1 [kPa/h], 0.1 [h]E η τ∞ = = =                 (18) 

The units are omitted in the following derivations in order for 
simplification. The coefficients in Eq. (12) for the constant strain 
rate loading may be solved iteratively in Eq. (14) as 

( ) 1 11.000, 1368.623, 0.516E η τ∞ = = =   (19) 

Therefore, 

( ) ( ) ( )1 1 1 1 1
1

/ 2650.322, 0 =2651.322, / 0 =0.9996
k

i
i

E E E E E Eη τ α
=

= = = ∞ + =∑ (20) 

Similarly, those coefficients for the stress relaxation may also be 
obtained 

 
( ) 1 1227.169, 131.872, 0.543E η τ∞ = = =  (21) 

 
Therefore, 

 ( ) ( ) ( )1 1 1 1 1
1

/ 242.907, 0 =470.077, / 0 =0.517
k

i
i

E E E E E Eη τ α
=

= = = ∞ + =∑  (22) 

 

 
Fig. 5. Stress σ of the Sample Loaded to 25.6466% Deformation for 
the Standard Linear Solid Models. 
 

Iteration may stop if the final change in the sum of squares (Eq. 
(13)) relative to its initial value is less than the default value of the 
tolerance. The fitted curve and experiment data are shown in Fig. 4, 
which are piecewise continuous. A high goodness of fit of the fitted 
curves and experimental results may be found in each load step in 
Fig. 4, although the continuity between fitted curves is really hard to 
achieve and discontinuity exists at some points. 

The second sample was loaded to 25.6466% deformations. The 
curve-fitting results are compared with the experimental ones as 
shown in Fig. 5. Discontinuity exists between the loading curve and 
the stress relaxation stage. The material parameters at the loading 
stage are: 

( )

( )

1 1

1 1

462.911, 978.539, 0.170,

5772.79, 0 6235.705, 0.926

E

E E

η τ

α

∞ = = =

= = =
   (23) 

and the parameters for the stress relaxation are: 

( )

( )

1 1

1 1

608.079, 74.983, 0.1310

572.322, 0 1180.401, 0.485

E

E E

η τ

α

∞ = = =

= = =
    (24) 
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Standard Linear Solid Models 
 
The model given by Eq. (17) may result in some defects, such as 
discontinuity in Figs. 4 and 5, which may be improved by 
substitution of Eq. (11) for Eq. (17) 

( ) 1
1

1 0
0 0

1 1

1 exp constant strain rate loading

1 exp stress relaxation

tE t

t t

ε η ε
τ

σ
ησ ε
τ τ

   
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   = 
  − − − −     

 

(25) 

 Piecewise Curve-Fitting Method 
 
The piecewise curve-fitting method is adopted and the fitted curve 
is shown in Fig. 6, where the parameters at the constant strain rate 
loading stage are 

 
( ) 1 11.000, 1368.623, 0.516E η τ∞ = = =  (26) 

and 

( ) ( ) ( )1 1 1 1 1
1

/ 2650.322, 0 =2651.322, / 0 =0.9996
k

i
i

E E E E E Eη τ α
=

= = = ∞ + =∑
                                                    

(27) 

The parameters for the stress relaxation are 

1 1104.943, 0.345η τ= =   (28) 

The elastic modulus, E(∞), may be solved in Eq. (11) as 

( ) 1
0 0 0

1

/ 239.453E ησ ε ε
τ

 
∞ = − = 

 
  (29) 

Therefore,

( ) ( ) ( )1 1 1 1 1
1

/ 303.873, 0 =543.326, / 0 =0.559
k

i
i

E E E E E Eη τ α
=

= = = ∞ + =∑
                                                   

(30) 

The time history of the stress shown in Fig. 6 compared with Fig. 
4, exhibits a high goodness of fit than the others. The reason is that 
the initial stress state σ0 in Eq. (10) is assumed to be known for the 
material model defined by Eq. (25). There is still difference between 
those elastic modulus obtained in Eqs. (26) and (29), which may 
cause divergent problems for numerical solution of the model. 

The time history of the stress in Figs. 5 and 7 well fits the 
experimental results, although there is discontinuity in the curves 
during the loading stage and the stress relaxation stage. The fitted 
parameters at the loading stage are 

 
( )

( )

1 1

1 1

462.900, 978.551, 0.170,

5772.718, 0 6235.618, 0.926

E

E E

η τ

α

∞ = = =

= = =
 (31) 

 
and these parameters for the stress relaxation are 

 
Fig. 6. Stress σ of the Sample Loaded to 50% Deformation for the 
Piecewise Curve-Fitting Method. 
 

 
Fig. 7. Stress σ of the Sample Loaded to 25.6466% Deformation for 
the Piecewise Curve-Fitting Method. 
 

 
Fig. 8. Generalized Maxwell Model (k = 2). 
 
( )

( )

1 1

1 1

612.726, 72.687, 0.124,

583.937, 0 1196.662, 0.488

E

E E

η τ

α

∞ = = =

= = =
  (32) 

 
Prony Series (k = 2) 
 
A more sophisticated model (Fig. 8), when the number of Maxwell 
element k is 2, may produce more accurate results. With the model, 
the constitutive relationship defined by Eqs. (8) and (12) in Prony 
series is selected for fitting curve. 

The goal is to solve the five unknown parameters: E(∞), η1, τ1, η2, 
τ2, which is iteratively solved with the initial guess of the elastic 
modulus E(∞) and the stress in kPa. The iterative process may fail 
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to converge to the solutions if the predefined maximum iteration 
number 500 is exceeded. The relaxation time τ2 and τ1 may also 
converge to the same number since both may be linearly dependent. 
The iteration starts from the initial guess of the elastic modulus and 
the stress. 

Parameters, such as α1, αi, γi, β1, βi and ϑi, are introduced to 
avoid the divergence problem presented above, 

( )
( )

2 2 2
1
2 2 2

1

, , constant strain rate loading
, , stress relaxation

i i i i

i i i i

E
E E

α η α τ γ
β β τ ϑ

 ∞ = = =
 ∞ = = =

    (33) 

Initial guesses for the relaxation time, τ1,0 and τ2,0, which may 
span the time range and differ initially by two or more orders of 
magnitude, could be 

1,0 2,00.1, 10τ τ= =    (34) 

The parameters of the sample loaded to 50% deformations in Fig. 
9 are obtained as 

( )

1 1

1 1 2

2 2
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, , ,
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          

   
= = =   
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，
16

0.615

 
 
  

     (35) 

where the first row of the matrix is the parameters at the loading 
stage and the second row is the parameters for the stress relaxation. 

The parameters of the sample loaded to 25.6466% deformations 
(Fig. 10) are also written in matrix form 

 

( )

1 1
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，
 
 
  

    (36) 

As a result, the generalized Maxwell model with two Maxwell 
elements fits better than others, which is clearly illustrated in Figs. 9 
and 10. 

 
Numerical Analysis 
 
The Finite element method is used to simulate the crack sealants 
between two pieces of cement concrete with the size of 50 mm × 50 
mm × 15 mm in Fig. 11, the modeling of which is constructed with 
the software ANSYS 14.0. 
 

Material Parameters 
 
Material parameters of the generalized Maxwell model shown in Fig. 
8 are chosen from the results of curve-fitting in Fig. 9 and Fig. 10. 
The elastic modulus E(0), the relative modulus αi and the relaxation 
time τi are input into the material model under loading till 50% 
deformation. 
 The parameters at the constant strain rate loading are given in 

Eq. (35) 

( ) [ ] 1 1

2 2

0 2.657 , 0.00183, 0.0001[h]

0.998, 0.516[h]

E MPa α τ

α τ

= = =

= =
 (37) 

 
Fig. 9. Stress σ of the Sample Loaded to 50% Deformation for the 
Generalized Maxwell Model (k=2). 
 

 
Fig. 10. Stress σ of the Sample Loaded to 25.6466% Deformation 
for the Generalized Maxwell Model (k = 2). 
 

 
Fig. 11. Test Specimen. 



Li et al. 

Vol.8 No.2 Mar. 2015                                              International Journal of Pavement Research and Technology  137 

 and those for the stress relaxation 

( ) [ ] [ ]1 1

2 2

0 0.543 , 0.165, 0.0001

0.424, 0.615[h]

E MPa hα τ

α τ

= = =

= =
 (38) 

Poisson’s ratio is assumed to be constant, that is 0.35. The shear 
modulus and the bulk modulus may be evaluated by 

( ) ( )
( ) ( ) ( )

( )
,

2 1 3 1 2
E t E t

G t K t
µ µ

= =
+ −

 (39) 

 
Computational Model 
 
Due to the symmetric properties of the geometry and the boundary 
conditions, only one-eighth of the model in Fig. 11 is built and 
meshed. Finer mesh is not recommended since the geometrical size 
of the computational model is as small as 25 mm ×25 mm ×7.5 mm, 
which are meshed with the 20-node brick element (solid186 in 
ANSYS). The element size is set by half of the width, which is 3.75 
mm as shown in Fig. 12(a).  

The boundary conditions are defined on the surface of the 
geometric model. The left, the back and the bottom surfaces are 
assumed to be symmetric planes, where the displacements in the 
normal directions are constrained as show in Fig. 12(b). The right 
side surface is assumed to be seamlessly adhered to the surface of 
the concrete and the displacements along the X-axis and the Z-axis 
are zero, shown in Fig. 12(b). The displacements along the Y-axis 
are set on the right side surface according to the experiment process, 
during which the displacements are defined by the constant strain 
rate loading until the strain reaches 0.5, as is shown in Fig. 2. 

Geometric nonlinearity is assumed for the modeling of the crack 
sealants under the constant strain rate loading and the stress 
relaxation. The material model with the stress-time relationship, 
which is taken to be continuous, is selected according to the 
curve-fitting method. The large deformation and the small strain are 
computed. Furthermore, the line search technique is introduced to 
the Newton-Raphson method to improve the iteration process. 
 
Numerical Results of the Sample Loading to 50% 
Deformation 
 
Modeling of crack sealants under the constant strain rate loading 
and the stress relaxation (Fig. 2) is solved with the finite element 
method. The displacement on the right surface in Fig. 12(b) 
increases with time till 3.75 mm and crack sealants under the 
constant strain rate are numerically simulated. The displacements on 
the right surface are then assumed to be constant (3.75 mm). The 
initial stress during the second load step is assumed to be the one 
obtained at the end of the constant strain rate loading period, which 
is input to determine how crack sealants release the stress under the 
constant strain. Material properties are also changed and the stress 
relaxation is solved afterwards. 

Only one eighth of the model is simulated because of the 
symmetrical properties of the geometry and the boundary conditions. 
The deformations after the constant strain rate loading are illustrated 

in Fig. 13, where the deformation of the geometrical model is 
compared with the undeformed one (Fig. 13(a)). The displacements 
along the Y-axis, X-axis and Z-axis are shown in Fig. 13(b), (c), and 
(d), respectively. Contour plots of the displacements in Fig. 13(b), 
(c), and (d) show that the displacements in the normal directions on 
the symmetric planes are zero. 

The principle stress σ1 and σ3 are shown in Fig. 14, where stress 
concentration may be found in the corners. Time history of the 
stress σy at the constant strain rate loading is surveyed at the point 

 

     
(a) Mesh           (b) Boundary Conditions 

Fig. 12. Mesh and Boundary Conditions. 
 
(0, 0, 3.75) on the right side surface to determine whether the 
selected material model conforms to the experimental observations. 
Numerical results are comparable with the experimental ones 
illustrated in Fig. 15 except that the stress at the end of the constant 
strain rate loading period relaxes due to the short relaxation time 
with its maximum value of 0.516 h obtained with the curve-fitting 
method. 

Relaxation of the initial stress, which is assumed to be the stress 
at the end of the constant strain rate loading period, is studied. 
Boundary conditions of the displacements along the normal 
direction on the symmetrical planes are set as zero. The 
displacements along the Y-axis on the right plane are kept as the one 
at the first loading period, namely 3.75 mm. 

The stress also decreases with time (Fig. 15). The starting time 
point t0 for the stress relaxation is the one at the end of the first 
loading period, which is treated as the origin in time dimension for 
the analysis of the stress relaxation. Material parameters are 
estimated in Eq. (38). The numerical results σy at the point (0, 0, 
3.75) are compared with the experimental ones, which supports 
conclusion that the generalized Maxwell model (a spring connected 
with two Maxwell elements in parallel) perfectly describes the 
material characteristics during the stress relaxation. 

The same example is simulated except that the material model is 
defined by the standard linear model (Eq. (17)) in order to compare 
the numerical results with the ones of the generalized Maxwell 
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model shown in Fig. 8. The numerical results of both models 
illustrated in Figs. 15 and 16 are comparable with the experimental 
results at the loading stage, though the stress solved with the 
generalized Maxwell model in Fig. 15 fits better than the one of the 
standard linear model for the stress relaxation in Fig. 16. 
 

Numerical Results of the Sample Loaded to 
25.6466% Deformation 
 
The sample loaded to 25.6466% deformation is simulated. Material 
parameters of the generalized Maxwell model shown in Fig. 8 

  
(a) Deformation (b) Displacement Uy 

  
(c) Displacement Ux (d) Displacement Uz 

Fig. 13. Deformed Shape and Contour of Displacement Tensor for the Sample Loaded to 50% Deformation. 
 

  
(a) σ1 at the End of Loading Stage (b) σ3 at the End of Loading Stage 

  
(c) σ1 at the End of Stress Relaxation (d) σ3 at the End of Stress Relaxation 

Fig. 14. Principle Stress σ1 and σ3 for the Sample Loaded to 50% Deformation. 
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Fig. 15. Time History of the Stress σY Solved with the Generalized 
Maxwell Model. 

 
Fig. 16. Time History of the Stress σY Solved with the Standard 
Linear Model.

 
are curve-fitting results given in Eq. (36), where 
 the parameters at the constant strain rate loading are 

( ) [ ] 1 1

2 2

0 6.232 , 0.926, 0.170[h]

0.00269, 2933.838[h]

E MPa α τ

α τ

= = =

= =
 (41) 

 and those for the stress relaxation are 

( ) [ ] [ ]1 1

2 2

0 1.224 , 0.251, 0.0513

0.355, 0.377[h]

E MPa hα τ

α τ

= = =

= =
 (42) 

Only one eighth of the model is simulated with the finite element 
method because of the symmetrical properties of the geometry and 
the boundary conditions. Boundary conditions for the displacement 

on the right side surface increases with time till 1.924 mm and then 
assumed to be kept constant (1.924 mm). 

The deformations after the constant strain rate loading are 
illustrated in Fig. 17, where the deformations of the geometrical 
model are compared with the undeformed ones (Fig. 13 (a)). The 
displacements along the Y-axis, X-axis and Z-axis are shown in Fig. 
13(b), (c), and (d), respectively. Contour plots of the displacements 
in Fig. 13(b), (c), and (d) shows that the displacements in the normal 
directions on the symmetric planes are zero. 

The deformation and the principle stress of the test sample under 
loading till 25.6466% deformation in Figs. 17 and 18 is similar to 
that under loading till 50% deformation in Figs. 13 and 14, where 
stress concentration may be found in the corners. Time history of 
the stress σy is surveyed at the point (0, 0, 3.75), of which numerical 

 

  
(a) Deformation (b) Displacement Uy 

  
(c) Displacement Ux (d) Displacement Uz 

Fig. 17. Deformed Shape and Contour of Displacement Tensor for the Sample Loaded to 25.6466% Deformation. 
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(a) σ1 at the End of Loading Stage (b) σ3 at the End of Loading Stage 

  
(b) σ1 at the End of Stress Relaxation (c) σ3 at the End of Stress Relaxation 

Fig. 18. Principle Stress σ1 and σ3 for the Sample Loading to 25.6466% Deformation. 
 

 
Fig. 19. Time History of Stress σy for the Sample Loaded to 
25.6466% Deformation. 
 
results are comparable with the experimental ones illustrated in Fig. 
19 except for the loading stage. 
 
Conclusions 
 
The generalized Maxwell model is chosen for curve-fitting to 
determine the material model for sealant. Comparison of fitted 
curve and experimental results proves that the generalized Maxwell 
model in Prony series is well suited for describing the experimental 
process. Moreover, finite element method with material model 
defined by the generalized Maxwell model in Prony series is 
introduced for numerical solution of tension and stress-relaxation of 
the crack sealants. By comparison of the numerical results with the 
experimental ones, this paper demonstrated that the tension and the 
stress-relaxation of crack sealants may be accurately depicted by the 
generalized Maxwell model. 

Numerical solutions with the generalized Maxwell model capture 
all of the important qualitative properties of the experimental data 
except a slight discrepancy between numerical results and 
experimental ones. The discrepancy arises from the facts that the 
fitted curve cannot perfectly fit the experimental results. The 
continuous curve of the stress-strain relationship is necessary for the 
numerical solution with the finite element method while the 
piecewise curve fitting method always produces discontinuity in the 
fitted curves. The constant strain rate loading and the stress 
relaxation may be well simulated with the material parameters 
introduced in the piecewise curve fitting method. 
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