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─────────────────────────────────────────────────────── 

Abstract: Fatigue damage in asphalt pavements is primarily regulated by the stiffness of asphalt layer. Asphalt stiffness deteriorates with 

repetitive application of vehicular loads due to bending effect. As a result, both bending stress and strain levels increase with repetitions 

which ultimately leads to fatigue failure under non-control loading conditions. Therefore, the material degradation i.e. the reduction in 

stiffness parameter can be utilized to measure fatigue damage, irrespective of the cracks condition in pavement structures. This paper 

focuses on the asphalt stiffness reduction models as function of load repetitions that can take care of critical stress-strain variations in 

pavement structures. Stiffness reduction models, both in strain control and stress control modes have been developed using visco-elastic 

principles. The proposed stiffness models are used for stress-strain calculations under non-control loading conditions, and are validated 

with the results obtained from structural analysis program. FEM based ABAQUS software is used for 3-D nonlinear analysis of 

multilayered pavement structures. It is concluded that the proposed models can correlate the critical stress and strain variations of 

in-service pavements, and can be used for fatigue damage evaluation with load repetitions. 
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Asphalt pavement structures mostly fail due to repetitive application 

of vehicular loads. Due to repetitive loadings, the asphalt stiffness 

(E) deteriorates and ultimately it leads to fatigue failure. Therefore, 

the incremental fatigue damage with repetitions (n) becomes 

nonlinear, though normally a linear damage principle is adopted in 

various design practices. To estimate the nonlinear fatigue damage 

as function of n or to design a pavement section with reliability 

more than 50% (i.e. damage factor less than one at failure situation), 

it needs to evaluate the stiffness degradation at the intermediate 

condition of pavement structure [1]. Various researchers [2-5] had 

studied the stiffness degradation in different asphalt materials. 

Baburamani (1999) [6] had critically discussed the stiffness 

variation due to fatigue phenomenon. A general trend of asphalt 

stiffness (E) variation with load repetitions (n) is presented in Fig. 1.  

The nonlinear fatigue propagation in asphalt pavements can be 

evaluated using field fatigue equation, and accounting the stiffness 

variation with load repetitions, even if no visible cracks exist [1,7]. 

A generic form of fatigue equation [8-13] is given in Eq. (1). 
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where, N is fatigue life; ε is critical horizontal tensile strain at the 

bottom of asphalt layer; E is asphalt stiffness; and c1, c2, and c3 are 

regression constants. Eq. (1) estimates N values for different ε and E 

values. For a given pavement section, the different N values can be 

calculated for different ε and E values as function of repetitions (n). 
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Initial fatigue life (N0) can be obtained corresponding to initial 

strain (ε0) and initial stiffness (E0) of the pavement section. It may 

be mentioned that the effect of lowering layers (granular materials) 

on horizontal tensile strain (ε) at the bottom of asphalt layer is 

insignificant and therefore, the degradation in granular materials due 

to repetitions (n) may be neglected for fatigue evaluation. 

Initially, the fatigue equation is developed under certain 

laboratory conditions and subsequently, it is calibrated using field 

data. Rajbongshi and Das (2009) [14] has presented a systematic 

procedure for calibration of laboratory equation. While developing 

the laboratory equation, normally the 3-point or 4-point bending test 

on beam samples is performed either in control strain or in control 

stress mode [3,6,10,15,16]. Cyclic loading is allowed at 8–10Hz 

frequency till failure. Traditionally, 50% reduction in asphalt 

stiffness is adopted as failure criterion [3,6,10,17] and the 

corresponding number of load repetitions is recorded as fatigue life. 

This is also depicted in Fig. 1. However, under field condition a 

pavement structure is subjected to neither in strain control nor in 

stress control mode. Both stress and strain increase with reduction in 

asphalt stiffness (E) due to load repetitions (n), even if for a 

 

 
Fig. 1. Trend of Asphalt Stiffness Variation with Load Repetitions. 
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constant loading. Therefore, the stiffness variation under stress or 

strain control mode (i.e. laboratory condition) shall be capable of 

handling the stress-strain variations under non-control mode (field 

condition).  This forms the scope of the present study. The 

objectives of the present study are - (i) to establish correlations for 

stress and strain variations with asphalt stiffness in pavement 

structures, (ii) to develop asphalt stiffness reduction model under 

control mode of loading, and (iii) to validate the stiffness model 

through numerical analysis of pavement structures. Stress and strain 

parameters mean the horizontal tensile stress and horizontal tensile 

strain at the bottom of asphalt layer. 

This paper has five sections of which this is the first section. Next 

section discusses the pavement analysis and stress-strain variations 

with stiffness parameter. The development of asphalt stiffness 

reduction models has been explained in third section. The validation 

of the models is elaborated in the next section. Finally, the 

conclusions are drawn in last section. It also contains one annexure. 

 

Analysis of Pavement Structure 

 

This section attempts to correlate the stress-strain variations with 

asphalt stiffness of pavement structures under non-control mode. To 

this effect, a 3-layered 3-D asphalt pavement is modeled as 

nonlinear elastic with finite boundaries in ABAQUS environment. 

This is shown in Fig. 2. In FEM based ABAQUS analysis of the 

structure, the eight noded linear brick element with reduced 

integration is considered, including a rough interface between two 

layers. Each node is subjected to three degree of freedom i.e. 

displacement in X, Y, Z –directions. For analysis purpose, a 

pavement section of 10m×3.5m is taken with the boundary 

conditions of zero displacement in transverse (X) and longitudinal 

(Y) directions, and no displacement or rotation (fixed end) at the 

bottom of subgrade layer, as depicted in Fig. 2. A dual wheel load of 

20kN each with center to centre distance of 30 cm and uniformly 

distributed tyre pressure of 0.7 MPa over its contact area has been 

adopted. The layers information used in the present analysis is given 

in Table 1. 

The critical tensile strain (ε) and tensile stress (ζ) values at the 

bottom of asphalt layer are obtained using ABAQUS analysis. For E 

= 2000 MPa, the ε and ζ values are obtained as 0.000127 and 

0.2449 MPa respectively, and recorded as initial strain (ε0) and 

initial stress (ζ0) corresponding to initial stiffness (E0) of 2000 MPa. 

In a similar way, the ζ and ε parameters are determined for different 

E values in the range of 2000 to 800 MPa under same loading 

condition. Fig. 3 shows the variations of ζ/ζ0 and ε/ε0 with E/E0 of 

the pavement section. It may be mentioned that this case, the ζ – ε 

variations are only due to the variation in asphalt stiffness (E) under 

non-control situation. The variations of ζ/ζ0 under the strain control 

mode and ε/ε0 under stress control mode are also depicted in Fig. 3. 

These cases, the stiffness parameter is expressed as E = ζ/ε0; where 

ε = ε0 (strain control) and E = ζ0/ε; where ζ = ζ0 (stress control). Fig. 

3 shows a significant difference in ζ – ε variations between control 

and non-control modes. Fig. 4 presents a comparison of ζ/ζ0 and ε/ε0 

parameters at the initial (i.e. E = E0) and failure (i.e. E = 50% of E0) 

conditions. As observed, the ζ/ζ0 or ε/ε0 value at failure is 

 

 
Fig. 2. Asphalt Pavement Section used in FEM Modeling. 

 

Table 1. Data Used for Asphalt Pavement Analysis. 

Layer 
Thickness 

(cm) 

E -value 

(MPa) 

Poisson’s 

Ratio 

Asphalt  15 2000-800 0.30 

Granular Base 30 350 0.35 

Subgrade  100 60 0.35 

 

 
Fig. 3. Stress-strain Variations with Asphalt Stiffness Under 

Different Loading Modes. 

 

significantly different under control (i.e. laboratory) and non-control 

(i.e. field) loadings. This is one of primary reasons of experiencing 

large shift factor between laboratory and field fatigue equations. 

Moreover, both ζ/ζ0 and ε/ε0 values under the field condition are 

same i.e. nearly 1.4 at failure situation (E/E0). That means, a 

pavement section fails at nearly 40% increase in stress or strain 

value corresponding to 50% reduction in stiffness value. Fig. 5 

shows the variations of ζ/ζ0 and ε/ε0 parameters with different E/E0 

ratio under field situation. Using the least square method of curve 

fitting, the best fit equations are obtained as given in Eq. (2).  

 

 



Rajbongshi and Engleng 

Vol.8 No.5 Sep. 2015                                              International Journal of Pavement Research and Technology  379 

 
Fig. 4. Comparisons of Stress and Strain Ratio at Initial and Failure 

Conditions. 

 

 
Fig. 5. Stress and Strain Variations with Asphalt Stiffness in 

Pavement Structure. 
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Eq. (2) indicates the stress and strain variations due to asphalt 

stiffness reduction of a given pavement section under non-control 

situation. Such stiffness reduction in pavement structures happens 

due to load repetitions, which is neither under stress control nor 

under strain control condition. Moreover, the stiffness reduction as 

obtained from the laboratory is either in strain control (relaxation) 

or in stress control (creep) condition. Relaxation and creep 

conditions are widely used in visco-elastic analysis of asphalt 

materials. Using visco-elastic principles, the subsequent sections 

attempt to develop stiffness reduction models under control loading 

(laboratory) and to explore the use of such models for stress and 

strain calculations under non-control loading (field). 

 

Development of Stiffness Reduction Models 

 

Asphalt stiffness (E) parameter as function of load repetitions (n) 

can be obtained from laboratory tests under relaxation (strain 

control) or creep (stress control) condition. Under relaxation 

condition, the relaxation stiffness (E(n)) function may be expressed 

as given in Eq. (3). 
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where, n  is number of load repetitions. Taking Laplace transform 

of Eq. (3), it can be written as, 
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where, )(sf  is Laplace transform of )(nf ; and S is Laplace 

transform variable. Similarly, under creep condition, the creep 

stiffness (C(n)) may be expressed as given in Eq. (5). 
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From Eqs. (4) and (6), one can write as, 

2
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Thus, taking inverse Laplace of Eq. (7), the E(n) and C(n) 

functions can be correlated as given in Eq. (8).  
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Eq. (8) represents the relationship between E(n) and C(n). C(n) 

can be obtained for any given E(n) and vice versa. Further, from Eqs. 

(40) and (6) the stress and strain functions can be written as given in 

Eq. (9). 
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From Eq. (9) and using the convolution integral theorem [18], the 

stress and strain as function of n can be expressed as given in Eq. 

(10). 
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where, n’ is an integrating variable.  

Eq. (10) represents the stress-strain relationship in functional 

form under non-control mode. While using Eq. (10), it needs to 

know the E(n) or C(n) function under laboratory condition. At this 

juncture E(n) and C(n)and based on the literatures [3,6,10,19], a 

simple form of exponential stiffness reduction may be considered as 

given in Eq. (11). 

 /)( nenE                      (11) 

where, λ and 1/ρ are the model parameters (constants). Eq. (11) 

represents the Maxwell form of relaxation modulus under relaxation 

condition. Using two boundary conditions, viz. E(n = 0) = E0 and 

E(n = N0) = aE0 at failure in Eq. (11), one can write λ = E0 and -1/ρ 

= ln(a)/N0; where, a indicates the stiffness ratio at failure condition. 

In the present work, the 50% reduction in stiffness value is 

considered as failure criterion, i.e. E(n = N0)/E0 = a = 0.5 for 

example case. Thus, the Eq. (11) can be re-written as given in Eq. 

(12). 
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From Eqs. (2) and (12) the strain and stress functions can be 

written as given in Eq. (13). 
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σ(n) and ε(n) in Eq. (13) are developed based on the analysis of 

pavement structures (Eq. (2)). Further, using the visco-elastic 

principles (refer to Eq. (10)), the σ(n) for any given ε(n) can be 

derived as given in Eq. (14).  
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Putting, σ(n = 0) = σ0 in Eq. (14), the integrating constant can be 

obtained as σ0. Thus, the Eq. (14) can be re-written as, 
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σ(n) in Eq. (15) utilizes the relaxation stiffness (E(n)) parameter 

as expressed in Eq. (12). Similarly, ε(n) can be derived utilizing the 

creep stiffness (C(n)) parameter (refer to Eq. (10)). To this effect, 

from Eqs. (8) and (12) the C(n) function can be obtained as given in 

Eq. (16). 
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Eq. (16) represents the Kelvin form of creep modulus under creep 

condition. It may be mentioned that 1/C(n = 0) = E(n = 0), and 

1/C(n) ≠ E(n); for n > 0. This is illustrated further in a later 

section. Thus, in a similar way the ε(n) for any given σ(n) can be 

derived (refer to Eq. (10)) as given in Eq. (17). 
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(17) 

Eq. (17) provides the ε(n) prediction based on C(n) as given in Eq. 

(16) and, Eq. (15) provides the σ(n) prediction based on E(n) as 

given in Eq. (12). The validation of E(n) and C(n) models are 

discussed in the next section. 

 

Validation of Stiffness Models 

 

To validate the relaxation stiffness and creep stiffness models, the 

following information are used.  

Another 3-layered pavement section is modeled in ABAQUS 

environment. The layers information is given in Table 2 and all 

other information used as mentioned in second section. Thus, from 

the analysis of pavement section with initial asphalt stiffness of E0 = 

1700 MPa the initial stress and initial strain values are obtained as 

σ0 = 0.282 MPa and ε0 = 0.000138 respectively. Subsequently, using 

Eq. (1) the fatigue life of the pavement structure is calculated as N0 

= 400×106 axles. The parameters of Eq. (1) i.e. c1, c2 and c3 are 

taken as 2.21×10-4, 3.89, and 0.854 respectively, as per IRC (2012) 

[9]. 

Using the relaxation stiffness model (Eq. (12)), the different E 

values can be obtained for different load repetitions (n). Accordingly, 

for each E -value the σ and ε values can be calculated from the 

pavement analysis program. Calculated σ and ε values are given in 

Table 3. Also, for different n values the σ and ε values are predicted 

using Eqs. (15) and (17) respectively. Predicted σ and ε values are 

also presented in the Table 3. From Table 3, it is seen that σ–ε values 

calculated through pavement analysis program are close to the 

predicted σ–ε values from Eqs. (15) and (17). The comparisons on 

the calculated and predicted σ and ε parameters are presented in Figs. 

6 and 7 respectively. As observed in Figs. 6 and 7, and in Table 3 it 

may be concluded that developed E(n) and C(n) models can 

correlate the stress-strain behaviors under non-control loading. 

These models contain two elements (λ and 1/ρ) that represent the 

stiffness reduction behavior in asphalt materials under control 

modes. E(n) and 1/C(n) functions are evaluated and presented in Fig. 

8 for the present example case. It is seen that E(n)≠1/C(n); for  

 

Table 2. Data Used for Validation of Stiffness Models. 

Layer 
Thickness 

(cm) 

E -value 

(MPa) 

Poisson’s 

ratio 

Asphalt  15 1700 0.30 

Granular Base 35 400 0.35 

Subgrade  100 50 0.35 
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Table 3. Comparisons of Result for Validation of Stiffness Models. 

Repetitions 

( n ) E -value (MPa)  - Calculated   - Predicted   (MPa)- Calculated   (MPa)- Predicted 

0.0 1700 0.000138 0.000138 0.282 0.282 

72×106 1500 0.000147 0.000152 0.314 0.299 

155×106 1300 0.000157 0.000167 0.339 0.316 

306×106 1000 0.000178 0.000194 0.360 0.346 

435×106 800 0.000198 0.000215 0.375 0.370 

601×106 600 0.000228 0.000239 0.448 0.401 

 

 
Fig. 6. Comparison of Observed and Predicted Stress Parameters. 

 
Fig. 7. Comparison of Observed and Predicted Strain Parameters. 

 

n > 0, i.e. E(n) ≠ ζ0/ε(n) under laboratory condition (stress control). 

Thus it implies that the stiffness variation under strain control and 

under stress conditions is different. E(n) or C(n) for asphalt mix 

either at constant strain or constant stress amplitude can be obtained 

using 3-point or 4-point laboratory beam test [3, 6, 10, 15, 20]. The 

expressions of E(n) and C(n) with 3-point and 4-point bending test 

are given in Annexure I. 

 

Conclusions 

 

This paper presents the theoretical stiffness reduction models in 

asphalt materials. Convolution integral theorem and Laplace 

transform are used for models development. The following 

conclusions are drawn from the present work. 

a) Stress and strain variations with asphalt stiffness reduction have 

been studied using 3-D nonlinear analysis of multilayered 

pavement structures. A very good correlation has been 

established between the strain and stiffness parameters, with 

R2=0.999. However, in case of stress variation with stiffness 

parameter, a relatively poor correlation is observed (R2 = 0.755). 

b) A stiffness reduction model (E(n)) under strain control mode has 

been developed using linear visco-elastic principles. It is 

established that the proposed E(n) model is good enough to 

predict the stress variation for any given strain variation under 

non-control loading conditions. Therefore, using the strain based 

fatigue equation and to evaluate the fatigue life as function load 

repetitions (n) the proposed E(n) model can be used.  

c) The relaxation stiffness (E(n)) under strain control mode can be 

obtained for known creep stiffness (C(n)) under stress control  

 
Fig. 8. Comparison of Stiffness Reduction in Strain Control and 

Stress Control Modes. 

 

mode. Accordingly, the E(n) function can be used for fatigue 

performance evaluation. In other words, the C(n) function can 

be used with the stress based fatigue equation for fatigue 

damage evaluation. 

d) E(n) ≠ 1/C(n) and, that is why the number of load repetitions 

obtained corresponding to 50% reduction in stiffness values are 

not same under constant strain and constant stress amplitude 

fatigue tests. 

e) Proposed E(n) and C(n) models are not specific to any fatigue 

equation. These models contain two parameters namely, λ and 

1/ρ. However, more parametric stiffness models may be studied 

for better prediction of stress-strain parameters. 
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Annexure I 

 

Expression for relaxation stiffness (E(n)) and creep stiffness (C(n)) 

with 3-point and 4-point bending tests: 

 

3-point Bending Test 

 

Let δ0 be the maximum deflection corresponding to load P0 applied 

at the middle of a simply supported asphalt beam with size b×h×l. 

Then, applying pure bending theory the corresponding strain (ε0) 

and stress (ζ0) parameters can be expressed as given in Eq. (18). 
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Accordingly, the relaxation stiffness (E(n)) and creep stiffness 

(C(n)) in functional form can be evaluates as given in Eqs. (19) and 

(20) respectively. 
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4-point Bending Test 

 

Let δ0 be the maximum deflection corresponding to load P0 applied 

at two locations (P0/2 each at equal span of l/3) of a simply 

supported beam with size b×h×l. Using the pure bending theory, the 

corresponding strain (ε0) and stress (ζ0) parameters can be expressed 

as given in Eq. (21). 
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Accordingly, the relaxation stiffness (E(n)) and creep stiffness 

(C(n)) in functional form can be evaluated as given in Eqs. (22) and 

(23) respectively. 
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