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Abstract

Permanent deformation is a major load-associated distress occurring in flexible pavement systems and increases with load repetitions
affecting road roughness, serviceability, and the international roughness index (IRI). Early detection of rutting is necessary for mainte-
nance and rehabilitation activities, but due to the complex behavior of asphalt mixtures, accurately predicting the permanent deforma-
tion of asphalt pavement is difficult. Historically, multivariate regression modeling and recently, artificial neural networks (ANNs) are
used widely for material properties prediction. The ability to model accurately the response variable is adversely affected when inputs
have pairwise correlations. To overcome this barrier, principal component analysis (PCA), as a dimensionality reduction technique,
can be used to produce uncorrelated linear combinations of the original inputs as illustrated in this work using 83 (i.e., samples) labo-
ratory compacted specimens from the State of Wisconsin. Asphalt binder, aggregate, and mix properties are obtained and used as the
model inputs. The response parameter is the accumulated strain at the corresponding flow number. Using the developed pseudo inputs
from PCA, a multivariate regression and an ANN model are generated and were able to fit the test cases with rfit of 0.8 and 0.97 respec-
tively. The developed machine learning-based framework is shown to be a capable tool in estimating the rutting behavior of asphalt
mixture.
� 2018 Chinese Society of Pavement Engineering. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Permanent deformation (also known as rutting) is one
of the most common flexible pavement’s distresses affecting
road roughness, serviceability, and international roughness
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index (IRI). Rutting in asphalt mixtures usually occurs in
wheel-paths and appears as the longitudinal depressions
with small upheavals to the side. This differential consoli-
dation in the pavement profile can cause safety issues [1].
Early detection of rutting is necessary for maintenance
and rehabilitation activities, but due to the complex behav-
ior of asphalt mixtures, accurately predicting the perma-
nent deformation of asphalt pavement is difficult. To
determine the amount of permanent deformation, different
modeling approaches can be used including empirical,
mechanistic-empirical, and mechanistic where the goal is
ommons.org/licenses/by-nc-nd/4.0/).
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to estimate future performance based on the laboratory test
data and the observed distress history of pavement.
Mechanistic-empirical, regression-based modeling and per-
formance testing approaches are prevalent in asphalt mix-
ture’s rut susceptibility analysis [1,2]. Recently, more
researchers have concentrated on viscoelastic, viscoplastic,
and viscoelastoplastic continuum damage-based modeling
to explain the rutting behavior of asphalt mixtures. These
models have some limitations including high dependency
on the empirical data and requiring accurate characteriza-
tion of asphalt behavior [3]. Although permanent deforma-
tion of hot mix asphalt (HMA) depends on stiffness of the
mixture, deformation cannot be estimated from the stiff-
ness characteristic alone. Many researchers have demon-
strated that in order to determine the rutting
performance of HMA mixtures, permanent deformation
characteristics should be measured directly [4]. Due to this
limitation, researchers have attempted to simulate rutting
by using a rutting resistance indicator parameter, entitled
flow number (FN), defined as the point where the perma-
nent strain rate reaches a minimum value. This parameter
can be measured by a repeated loading and unloading test
[5]. The FN has indicated a good correlation with field rut-
ting of asphalt mixtures exposed to different levels of traffic
[6].

The width, path, and severity of the rutting profile
depend on the pavement structure, loading, and environ-
mental conditions. During the design procedure, there is
generally a limiting criteria of 0.4 inches (10.16 mm) with
the total deformation of the pavement structure and its
impacts on the lateral and longitudinal surface profiles.
Many researchers have demonstrated that the amount of
rutting depends on the mixture volumetric properties, bin-
der viscosity, and testing temperature [7]. Asphalt mixture
properties, which affect rutting behavior (simulated by
FN), were identified more precisely by Kvasnak et al. [8].
They demonstrated that binder grade, binder viscosity,
asphalt content, testing temperature, nominal maximum

aggregateaggregate size (NMAS), voids in mineral
(VMA), percentage aggregate passing from sieve sizes
No. 4, No. 16, No. 200, and number of gyrations affect
the FN of asphalt mixture. Rodezno et al. [9] represented
12 parameters affecting rutting behavior of asphalt mix-
tures in the laboratory including testing temperature, max-
imum shear stress, normal stress, binder viscosity,
percentage aggregate passing from sieve sizes 3/4-in, 3/8-
in, and No. 4, air voids, effective binder content, binder
content, VMA, and voids filled with asphalt (VFA).
Although, there are some disagreements on the existence
of correlation between dynamic modulus of asphalt mix-
ture and its rutting behavior [10,11,12,13], Apeagyei [14]
represented that using dynamic modulus test results at
specific test temperature and loading frequencies in con-
junction with aggregate gradation shows a good correla-
tion with FN test results. According to the existing
literatures, the parameters affecting the rutting behavior
of asphalt mixtures can be classified into three categories
including asphalt properties representing the viscoelastic
and viscoplastic behavior, aggregate properties represent-
ing the elastic/plastic behavior, and mixture properties.

Early detection of rutting, required for punctual mainte-
nance and rehabilitation activities, provides motivation for
the designers to predict the rutting behavior of the asphalt
mixtures. Historically multivariate regression modeling
and recently, pattern recognition techniques are used
widely for material properties prediction [15]. In the con-
ventional material modeling process, regression analysis
is an important tool for building a model. In linear regres-
sion analysis, several procedures have been developed for
parameter estimation. These methods differ in computa-
tional simplicity of algorithms, presence of a closed-form
solution, robustness with respect to heavy-tailed distribu-
tion, and theoretical assumptions needed to validate desir-
able statistical properties. Among these methods, least-
square estimation is the simplest and the most common
technique. It minimizes the sum of squared residuals, and
leads to a closed-form expression for the estimated value
of the unknown parameter [16]. Pattern recognition tech-
niques can learn and recognize trends in data contributing
to their current widespread use. These techniques learn the
pattern from experimental data and design the computa-
tional models. One such approach, Artificial Neural Net-
work (ANN), is an interconnected network of many
simple processors as shown in Fig. 1. All ANNs consist
of a set of processing units or neurons classified as input,
hidden and output neurons. Input neurons receive input
from external sources and transfer it to the rest of the net-
work. Hidden neurons receive input and transmit their
computed output to the processing units within the net-
work without any outside contact. Output neurons receive
the input from the rest of the network that it transforms
and sends to external receivers [17].

Although ANN can be trained to approximate a non-
linear, complicated relationship [18,19,20,21], similar to
multivariate linear regression model and other modeling
tools, their ability to accurately predict the response vari-
able highly depends on the quality and properties of input
variables [22] adversely affect. Cross-correlated inputs
accurate estimation of their causative effects on the
response variable and this impedes the ability of the model
to accurately estimate the response variable [23]. Thus, a
pre-processing step is needed to examine the quality and
relationship of input variables – a step not commonly prac-
ticed by design engineers in this application.

In the presence of correlated input variables, orthogonal
variables can be obtained using a dimensionality reduction
technique called principal component analysis (PCA). PCA
is a multivariate statistical procedure that uses an orthogo-
nal transformation to convert a set of correlated variables
into a set of uncorrelated variables called principal compo-
nents (PCs). The PCs are a set of orthogonal, linear combi-
nations of the original variables within the dataset [24,25].

The present study focuses on developing a machine
learning-based framework to reduce a large set of corre-
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Fig. 1. Example of an architecture for ANN.
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lated input variables to a set of uncorrelated input variables
to model the accumulated strain of asphalt mixtures using
ANN and multivariate regression structures.

The rest of the paper is organized in the following way.
Experimental materials and methods are presented in Sec-
tion 2. Section 3 covers the pre-processing step for input
variables evaluation. PCA is described in detail in Section 4.
The proposed modeling methods, PCR and PCNN, are
presented in Sections 5, followed by results, discussion,
and conclusions in Sections 6 and 7 respectively.

2. Experimental materials and methods

2.1. Materials sampling and collection

The materials used in the present study were sampled at
the plant site directly from the back of trucks after they had
been loaded out, in accordance with ASTM Standard D979
[26] and D3665 [27]. In addition to the mix, the asphalt bin-
der was also sampled for each pavement section. Maximum
theoretical specific gravity (Gmm) was measured in accor-
dance with AASHTO T209/ASTM D2041 [28] for two
1250 g split samples for each job. The Gmm was used to
determine the volumetric properties of the specimens.
Eighty-three specimens from 21 different HMA mixtures
collected from different projects in the State of Wisconsin,
were compacted in the laboratory using a Pine AFGC125X
Superpave Gyratory Compactor (SGC) that can produce
specimens in the dimensions of roughly 150 mm in diame-
ter by 170 mm in height. Specimens were compacted to
4.0%, 7.0%, and 10.0% air voids. The bulk specific gravity
was determined in accordance with AASHTO T166/ASTM
D2726 [29].

2.2. Dynamic modulus testing

A 100-mm diameter by 150 mm high cylindrical speci-
men was cored, trimmed, and prepared for the dynamic
modulus test. The specimens were tested under a repeated
sinusoidal compressive stress at an effective test tempera-
ture of 36.6 �C and at four loading frequencies including
25, 10, 1, and 0.1 Hz in unconfined conditions. The effective
test temperature for all of the laboratory tests (36.6 �C) was
selected based on climatic condition of the Midwestern
parts of the United States, and was considered the temper-
ature at which permanent deformation would occur, which
is equivalent to a seasonal correction throughout the year.
A Universal Testing Machine (UTM 100) was used to con-
duct the testing with a temperature controlled testing
chamber. In accordance with AASHTO TP 79-13 [5] the
test was conducted from higher to lower frequencies to mit-
igate the amount of deformation that is induced upon
specimens.

2.3. Flow number testing

After conducting the dynamic modulus tests, the same
specimens were used for performing the FN test under a
repeated haversine compressive stress at a single effective
temperature. The UTM 100 machine was used to perform
the tests, with a temperature-controlled testing chamber.
The load was applied for a duration of 0.1 s and a dwell
period of 0.9 s. No confining pressure was used and the
axial stress is the deviator stress (600 kPa). The FN test is
conducted at the effective test temperature of 36.6 �C.
The reason why the accumulated strain at the FN is
selected as the response variable, and not the FN itself, is
that the FN is just an indicator parameter of rutting resis-
tance, and to relate laboratory data to the AASHTO
design procedure, which uses strain and not FN as the rut-
ting criteria.

2.4. Complex shear modulus testing

To obtain binder shear properties, complex shear mod-
ulus test was conducted at the same effective test tempera-
ture of 36.6 �C and same frequencies including 25, 10, 1,
and 0.1 Hz. The test was conducted in accordance with
ASTM D755-09 [30].

3. Pre-processing step: input variable selection strategy

Selecting input variables is a fundamental and crucial
task in identifying the optimal functional form of statistical
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models. Accurate modeling of the output requires a set of
input variables sufficiently high in information content that
maps to the output space. The difficulty of selecting a par-
simonious set of input variables arises due to the following
reasons: 1. the number of available variables can be very
large; 2. high correlations exist between input variables,
and; 3. variables that are unknown to be weakly related
or unrelated to the response [31].

Mathematical modeling is the process of mathematically
relating measured input variables to output variables. The
modeler selects a mathematical structure and a process for
estimating unknown model parameters. For a general
model structure, let its expectation be represented as gi =
f (Xi;h), where gi is the expected value of the response
(i.e., output) at the ith sampling time, i = 1,. . ., n; Xi is
the vector of input values at the ith sampling time; and h
is the vector of unknown model parameters with h = [h1-
. . .hq]

T. Let the element of its Jacobian Matrix, Jnxq, in

the ith row and jth column be @gi
@hj

i.e., J ¼ @gi
@hj

n o
. Note that,

the jth column represents hj and its column vector repre-
sents the change in the response space as hj changes for
the set of experimental conditions. If two columns such
as j and k are orthogonal, then their correlation coefficient
is zero. More specifically, if these two columns are orthog-
onal, the information to estimate hj is decoupled (i.e., sep-
arate or independent) from the information to estimate hk,
and vice versa. The advantage of this attribute is that it
strengthens causative relationships of inputs on the output
and maximizes parameter accuracy, and thus, estimation
accuracy for the modeled output. Correlated columns in
the Jacobian Matrix arise from pairwise correlation of
inputs. Thus, for a given set of experimental data, to min-
imize standard error and maximize the accurate mapping
of input behavior into the response space, this work seeks
to minimize pairwise correlation of the inputs that are used
to model the response behavior.
Table 1
Original input variables.

Values in the databaseVariable Identity

AMax.Min.

x1 56.63.4Binder%
x2 61,163,560210,801G*
x3 12512.5NMAS
x4 Passing 3/400 910081.3
x5 Passing 1/200 898.838.3
x6 Passing 3/800 789.934.1
x7 572.526.2Passing #4
x8 45417.5Passing #8
x9 347.414.2Passing #16
x10 239.19.6Passing #30
x11 118.65.7Passing #50
x12 69.83.7Passing #100
x13 48.52.8Passing #200
x14 12110.323VMA
x15 691.71946.45VFA
x16 59.8251.019Va%
x17 E* 82299.4395.7
According to the literature [7,9], the rutting behavior of
an asphalt mixture can be explained by its components’
properties. The properties and their ranges used in the pre-
sent study are indicated by Table 1. As previously men-
tioned, the binder properties describe the viscous
behavior and the aggregate properties describe the elastic
behavior. The complex shear modulus of asphalt binder
is selected to describe the shear relaxation behavior and
the dynamic modulus of asphalt mixture is selected as the
demonstration of material stiffness used in mechanistic-
empirical pavement design.

The seventeen aforementioned properties are expressed
as input variables to predict the accumulated strain value
at the FN. Using JMP statistical software [32], the pairwise
correlation matrix of input variables is calculated and pre-
sented by Table 2. Results with absolute value of 0.5 and
higher are in bold text.

As it can be seen in the table, the absolute value of 273
results are above 0.1 which shows that most of the inputs
are highly correlated with 41 of them greater than 0.5 indi-
cating that several inputs are highly correlated. Therefore,
to predict the response variable accurately, we used princi-
pal component analysis (PCA) to obtain a much smaller set
of pseudo variables that are uncorrelated [31].
4. Principal component analysis (PCA)

Mathematically, PCA is defined as an orthogonal linear
transformation that transforms the data to a new coordi-
nate system such that the greatest variance by some projec-
tion of the data comes to lie on the first coordinate (or the
first principal component), the second greatest variance on
the second coordinate, and so on. It can be considered as
fitting an n-dimensional ellipsoid to the data, where each
axis of the ellipsoid represents a principal component. If
some axis of the ellipsoid is small, then the variance along
Selection based on

Current researchLiteratureStd. Dev.ve.

0.773.093 U

265903.65212,180 U

3.7615.922 U

4.0858.554 U

15.1997.13 U

15.0996.34 U

13.7416.248 U

10.5122.249 U

8.742.178 U

7.0043.196 U

3.1792.022 U

1.424.187 U

1.115.322 U

2.5026.452 U

9.0625.189 U

2.088.868 U

411.52469.41 U
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Table 2
Correlation matrix for the input variables. Results with absolute value of 0.5 and higher are in bold text.

x17x16x15x14x13x12x11x10x9x8x7x6x5x4x3x2x1

x1 0.331 � 0.630.710.73 0.60 0.420.430.410.450.460.450.47 0.61 � 0.350.18 �0.43
x2 10.33 � 0.080.11 �0.03 �0.23 �0.38 �0.32 �0.18 � 0.020.350.230.010.06 � 0.240.020.02
x3 �0.73 � 10.11 �0.64 �0.76 �0.69 �0.51 �0.41 �0.39 �0.32 �0.25 �0.30 �0.39 �0.53 0.13 � 0.370.30

0.60x4 0.08 �0.64 1 0.510.580.780.88 0.460.240.230.250.320.42 � 0.320.21 �0.45
0.71x5 �0.03 �0.76 0.88 1 0.610.710.770.95 0.360.390.430.49 0.56 � 0.440.33 �0.51

0.63x6 �0.23 � 0.950.69 0.78 1 0.610.750.860.92 0.160.300.49 0.53 � 0.380.27 �0.49
x7 0.47 �0.38 � 0.920.770.51 0.58 1 0.690.840.95 0.110.49 � 0.430.14 � 0.260.16 �0.37
x8 0.45 �0.32 �0.41 0.950.860.710.51 1 0.590.830.95 0.11 � 0.420.15 � 0.260.16 �0.41
x9 0.46 �0.18 � 0.420.39 0.950.840.750.61 1 0.740.96 0.18 � 0.400.11 � 0.250.16 �0.41
x10 0.45 �0.06 � 0.490.320.32 0.960.830.690.61 1 0.84 0.28 � 0.350.06 � 0.220.15 �0.37
x11 0.010.41 � 0.490.490.430.250.25 0.840.740.59 1 0.59 0.210.17 � 0.200.20 �0.25
x12 0.230.43 � 0.280.180.110.110.300.390.230.30 0.59 1 0.82 0.24 � 0.280.28 �0.15
x13 0.350.42 � 0.160.360.240.39 �0.14 �0.15 �0.11 � 0.170.06 0.82 0.291 � 0.320.30 �0.22

0.61x14 0.02 �0.53 0.46 0.530.56 10.290.240.210.350.400.420.43 �0.62 0.83 �0.71

x15 �0.18 � 0.130.02 �0.21 �0.33 �0.27 �0.16 �0.16 �0.16 �0.15 �0.20 �0.28 �0.30 �0.62 1 �0.94 0.52
x16 0.020.35 � 0.320.280.200.220.250.260.260.380.440.320.30 0.83 �0.94 1 �0.63

x17 � 0.370.240.43 �0.45 �0.51 �0.49 �0.37 �0.41 �0.41 �0.37 �0.25 �0.15 �0.22 �0.71 0.52 �0.63 1
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that axis is also small, and by omitting that axis and its cor-
responding principal component from our representation
of the data set, we lose only a commensurately small
amount of information. Often, this operation can be
thought of as revealing the internal structure of the data
in a way that best explains the variance within the data.
If a multivariate dataset is visualized as a set of coordinates
in a high-dimensional data space (1 axis per variable), PCA
can supply the user with a lower-dimensional picture, a
projection of this object when viewed from its most infor-
mative viewpoint [24]. A schematic of this transformation
for three inputs is presented in Fig. 2. This is done using
only the first few principal components so that the dimen-
sionality of the transformed data is reduced.

Considering a data set X, PCA reduces the dimension
of X by expressing the p (p = 17) original variables
(x1; . . . ; xpÞ as d new pseudo-variables (principal compo-
nents, PCs), where d < p. The PCs are a set of orthogo-
nal (i.e., uncorrelated), linear combinations of the
original variables within the dataset. The obtained PCs
can be used for multiple purposes including: 1. to con-
struct a new set of variables that are linear combinations
Fig. 2. Schematic of the PCA transformation taken from Scholz 2006 [33]. Orig
a 2-dimensional component space with PC1 and PC2 as the axes of the coord
of the original variables and that contain exactly the
same information as the original variables; 2. to identify
patterns of multicollinearity in a data set and use the
results to address the collinearity problem in multiple lin-
ear regression; 3. to identify variables or factors, underly-
ing the original variables, which are responsible for the
variation in the data; 4. to find out the effective number
of dimensions over which the data set exhibits variation,
with the purpose of reducing the number of dimensions
of the problem and; 5. to create a few orthogonal vari-
ables that contain most of the information in the data
and that simplify the identification of groupings in the
observations [34]. PCA can be considered as a data
pre-processing methodology that determines an optimal
rotational transformation of the dataset, X, and maxi-
mizes the amount of variance of the output c that is
explained by the PCs [31].

Considering the given dataset X, PCA is performed in
the following steps:

1. Standardizing X by transforming it to Z using the fol-
lowing equations.
inal data space presented on the left with 3 input variables transformed to
inate.
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X ¼

x11 x12 � � � x1p
x21 x22 � � � x2p

..

. ..
. . .

. ..
.

xn1 xn2 � � � xnp

2
66664

3
77775

ð1Þ

Z ¼ ½ z1 z2 . . . zp � ¼

x11�x1
s1

x12�x2
s2

. . .
x1p�xp

sp

x21�x1
s1

x22�x2
s2

. . .
x2p�xp

sp

..

. ..
. . .

. ..
.

xn1�x1
s1

xn2�x2
s2

. . .
xnp�xp

sp

2
6666664

3
7777775

ð2Þ

where, for i ¼ 1 to n and j ¼ 1 to p; xij ¼ the ith measure-
ment for the jth variable, xi = sample mean for the ith

variable, and si = sample standard deviation for the ith

variable.
2. Determine the unit eigenvectors e1; . . . ; ep of Z.
3. Determine the corresponding eigenvalues k1; . . . ; kp.
4. Rank the eigenvectors according to their eigenvalues.
5. Select the d PCs according to their eigenvalues (or the

scree plot).

Selection of the PCs is based on examining the eigenval-
ues of each PC, which correspond to the amount of vari-
ance explained by each PC, and thereby including only
the significant PCs as input features. A common selection
method is to rank the PCs and select all PCs whose eigen-
values exceed some threshold, k, to ensure that selected
components explain the desired amount of variance of c.
Another selection method is to generate and use a scree
plot of the percentage contribution of each kth PC and to
visually identify an optimal value of k. Therefore, the first
PC contains the most variance possible to be captured in a
single axis. The second PC is orthogonal to the first one
(their correlation is zero) and contains as much of the
remaining variance as possible. The third PC is orthogonal
to all previous ones and also contains the most variance
possible, etc. [25].

Using the JMP statistical software package [32], the
eigenvectors and eigenvalues of the correlation matrix are
calculated and presented in Tables 3 and 4, respectively.
According to the eigenvalues, 89.72% of the variation in
the original data is explained by the first 5 PCs. The scree
plot, which is a graph of the eigenvalues versus their order,
can also be used as a visual inspector of identifying critical
PCs. The scree plot is presented in Fig. 3. The ‘‘elbow”
point, and the location of this breaking point, indicates
the number of critical PCs to be selected. The presented
graph illustrates that there are 4 critical PCs.

Based on the PCA results, the first 5 PCs were selected
to create pseudo input variables. As mentioned previously,
these PCs are a linear combination of the original input
variables described by Eq. (3):

PCi ¼
X17
j¼1

aijX j þ bi ð3Þ

https://doi.org/10.1016/j.ijprt.2018.01.003


Table 4
Eigenvalues from the Z Matrix.

Cumulative percentPercent varianceNumber Eigenvalue

46.93546.9357.9791
63.85616.9202.8762
75.31111.4561.9473
84.3639.0521.5394
89.7265.3630.9125
93.1453.4190.5816
95.6202.4750.4217
97.1491.5290.2608
98.3141.1650.1989
99.2060.8920.15210
99.5770.3710.06311
99.8010.2240.03812
99.8960.0950.01613
99.9450.0490.00814
99.9730.0280.00515
99.9890.0160.00316
100.0000.0110.00217

Fig. 3. Scree plot.

P. Ghasemi et al. / International Journal of Pavement Research and Technology 11 (2018) 679-690 685
where, a is the corresponding coefficient, b is constant, and
Xj’s are the original input variables.

Eq. (3) is presented in matrix notation by Eq. (4):

PC ¼ AZT þ B ð4Þ
where,
AT ¼

3:41E� 01 �2:04E� 201 :89E� 01 �1:94E� 301 :71E� 01

�7:60E� 08 �1:17E� 106 :31E� 106 :05E� 207 :47E� 06

�6:59E� 302 :22E� 02 �4:53E� 902 :10E� 02 �7:97E� 03

6:34E� 02 �1:31E� 102 :86E� 02 �9:38E� 02 �7:13E� 03

2:11E� 02 �2:33E� 503 :26E� 03 �1:63E� 02 �9:03E� 03

2:17E� 702 :23E� 103 :55E� 03 �1:23E� 02 �1:13E� 02

2:13E� 202 :01E� 02 �2:82E� 03 �7:27E� 03 �7:11E� 03

2:79E� 202 :89E� 02 �2:98E� 303 :79E� 103 :41E� 03

3:28E� 302 :22E� 402 :43E� 203 :35E� 102 :71E� 02

3:73E� 302 :39E� 102 :53E� 402 :98E� 302 :14E� 02

7:08E� 302 :30E� 702 :38E� 102 :54E� 01 �9:05E� 03

1:08E� 01 �2:03E� 201 :33E� 201 :30E� 01 �2:72E� 01

9:18E� 02 �4:06E� 01 2:29E� 01 6:69E� 02 �3:18E� 01

9:98E� 02 �8:77E� 02 �1:12E� 01 �1:14E� 02 8:85E� 02

�1:73E� 302 :21E� 02 4:57E� 02 �2:69E� 02 �9:43E� 04

9:75E� 02 �1:42E� 01 �1:95E� 701 :31E� 402 :70E� 02

�5:50E� 204 :73E� 804 :20E� 04 �8:92E� 106 :36E� 04

2
6666666666666666666666666666666666664

3
7777777777777777777777777777777777775
B ¼

�1:72E þ 01

5:87E � 01

�8:21E þ 00

7:36E þ 00

�4:85E � 01

2
666666664

3
777777775
The obtained PCs will be used as new inputs for further
modeling efforts.
5. Proposed modeling approaches

5.1. K-fold cross validation

In order to recognize how the results of the statistical
analysis will generalize to an independent data set, and to
prevent overfitting, a k-fold cross-validation technique is

https://doi.org/10.1016/j.ijprt.2018.01.003


Table 5
Linear Regression Equation’s Coefficients.

Coefficient value

c0 1.64 e + 4
c1 �8.89 e + 2
c2 �1.24 e + 3
c3 �1.24 e + 3
c4 �92.41
c5 6.55 e + 2
c6 1.58 e + 2
c7 �4.35 e + 2
c8 2.35 e + 2
c9 3.74 e + 2
c10 �8.28 e + 2
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used [35]. Cross validation is a procedure to guard against
overfitting models by checking the fitted model against a
set of data that was not used in fitting the model. In k-
fold cross-validation, the dataset is randomly partitioned
into k equal-sized subsamples. When using only a training
set and test set of the k subsamples, a single subsample is
retained and the set for testing the model, and the remain-
ing k � 1 subsamples are used as training data, e.g., to fit
the model. The cross-validation process is then repeated
k times (the folds), with each of the k subsamples used
exactly once as the test data. The advantage of this method
over repeated random subsampling is that all observations
are used for both training and testing, and each observa-
tion is used for testing exactly once. Based on the size of
the data set (83), 3-folds with 24 sample vectors in each
of them are randomly selected, and 3-fold cross-
validation is done.

5.2. Principal component regression (PCR)

Using the first five PCs as input variables and the accu-
mulated strain as the response variable, multiple regression
modeling consisting of the second-order quadratic and
interaction terms was fit and retrained. Least squares crite-
rion of minimizing the sum of squared residuals (SSE) is
used for both linear regression and ANN modeling. For
the training fold, it minimizes the sum of squared residuals
and develops a closed-form expression for the estimated
value of the unknown parameter. Full third-order models
and reduced third order models were also developed and
fitted. However, these models were rejected because they
did not significantly improve fit to the training data and
gave worse fit to the test data.

5.3. Principal Component Neural Network (PCNN)

The proposed Principal Component Neural Network
(PCNN) approach was used to develop predictive models
of the response that included the pseudo variables as
inputs. More specifically, a three-layer feedforward neural
network consisting of an input layer of 5 neurons, a hid-
den layer of 10 neurons, and an output layer of one neu-
ron was developed using the MATLAB program [36].
Selection of the number of neurons in the hidden layer
is based on a trial-and-error procedure between optimiza-
tion of the cost function and computational time. A four-
layer network with two hidden layers was also developed
but due to the principal of parsimony, the simplest and
most economical way (in terms of computational time)
has been selected.

For each fold, the training process starts with adjusting
the initial values of the network’s weights and biases in
order to obtain a reasonable output and continues modify-
ing the network by minimizing SSE. The iteration contin-
ues until the convergence criterion is met (Note that this
is the reason a validation set is not used. That is, just as
for the linear regression model, training stops when conver-
gence is obtained). The Bayesian Regularization algorithm
is implemented for the training efficiency of the network.
6. Results and discussion

6.1. Results

Results of the proposed methods are presented in this
section and their accuracy in predicting the rutting behav-
ior of asphalt mixtures is evaluated and compared. The
second-order quadratic linear regression model fit the mea-
sured response, y, best and is given by Eq. (5) as ŷ:

ŷ ¼ c0 þ c1 � PC1 þ c2 � PC2 þ c3 � PC3 þ c4 � PC4

þ c5 � PC5 þ c6 � PC1 � PC2 þ c7 � PC2 � PC4 þ c8

� PC1 � PC3 þ c9 � PC2 � PC3 þ c10 � PC3 � PC5 ð5Þ

where, cis for i ¼ 0; . . . ; 10 are presented in Table 5:
The successfully trained ANN models can be presented

by Eq. (6) for ease of use and wider reproduction. Each
ANN is presented by the connection weights and biases
in a three-layer topology [37].

ŷ ¼ f 2fB0 þ
Xn

j¼1

½W j:f 1ðBHj þ
Xm
i¼1

W ijP i ðÞ�g 6Þ

where, B0 ¼ bias at output layer (just one neuron at this
layer); W j ¼ weight of connection between neuron j of
the hidden layer and output layer neuron; BHj ¼ bias at
neuron j of the hidden layer (for j ¼ 1 to 10Þ; W ij ¼ weight
of connection between input variable i (for i ¼ 1 to 5) and
neuron j of the hidden layer; P i ¼ input parameter i;
f 1ðtÞ ¼ transfer function of the hidden layer, and f 2ðtÞ ¼
transfer function of the output layer.

Both transfer functions f 1ðtÞ and f 2ðtÞ are sigmoid func-
tions defined in Eq. (7) [37].

f kðtÞ ¼
1

1þ e�t
for k ¼ 1; 2 ð7Þ

The connection weights and biases of the ANN are
presented by the following matrixes.

https://doi.org/10.1016/j.ijprt.2018.01.003
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W ij ¼

�0: 1447 :702 �0:811 �0:854 �1:295

0:010 �1: 0462 : 0280 :114 �1:926

1:315 �1:391 �0:028 �0: 0218 :895

�0: 0089 :182 �0:135 �0:323 �0:150

0:089 �0: 0182 : 0135 : 0324 :150

�0: 0613 :255 �1:190 �0: 0808 :120

0:089 �0: 0182 : 0135 : 0324 :150

0:443 �1:496 �0: 1414 :051 �0:641

0:280 �0: 0625 : 0831 : 1736 :158

�0: 0007 : 0168 :003 �1:380 �0:292

2
6666666666666666664

3
7777777777777777775

W j ¼

0:673

0:348

�1:250

�0:294

0:294

�1:713

0:294

�0:262

0:974

0:986

2
6666666666666666664

3
7777777777777777775

;BHj ¼

�0:084

�1:208

�1:742

�1:528

0:567

�0:567

�1:320

�0:567

1:464

�1:750

2
6666666666666666664

3
7777777777777777775

;BHj ¼ ½1:334�

Performance results of the PCR and PCNN models are
given based on the following statistics, and presented in
Table 5. The first statistic is the ‘‘average error (AE)”
defined as

AE ¼ 1=n
Xn

i¼1

ðyi � ŷiÞ ð8Þ

AE is an estimate of systematic model bias, n is the num-
ber of input vectors, yi is the ith measured response value,
and ŷi is the ith fitted response value. The second statistic is
the ‘‘average absolute error (AAE)” and defined as

AAE ¼ 1=n
Xn

i¼1

jyi � ŷij ð9Þ

This statistic gives the average closeness of the fitted
value to the measured response value. The third statistic,
rfit, is the correlation of yi and ŷi and defined as
Table 6
Statistical analysis of PCR and PCNN modeling. Highest values are in bold t

PCRSubset Statistics

Fold 2Fold 1

00AETraining
1705.551497.02AAE

rfit 0.820.83
R2 0.680.69

626.73AETesting �129.91
1515.742007.47AAE

rfit 0.79 0.80

R2 na* na*

* Not applicable.
rfit ¼ n
Pn

i¼1yiŷi � ðPn
i¼1yiÞð

Pn
i¼1ŷiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

i¼1y
2
i � ðPn

i¼1yiÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
n
Pn

i¼1ŷ
2
i � ðPn

i¼1ŷiÞ2
q ð10Þ

The better the fit, the higher rfitwill be with a maximum
possible value of 1. The last statistic is R2 or the coefficient
of determination. In linear regression, for training, R2 is the
portion of the variation explained by the fitted model. It is
only applicable to the PCR since it is linear in parameters
but not to PCNN it is non-linear in parameters.

According to the values of rfit presented in Table 6, the
predicted values of accumulated strain by PCR and PCNN
models have a high correlation with the measured ones
which means both PCR and PCNN modeled the response
well. The second fold of PCR has the highest PCR rfit
which is 0.8. The first fold of the PCNN has the highest
PCNN rfit of 0.97 which is the highest compare to other
folds in both methods.

A phenomenological model is given by Eq. (9) below:

�p
�r

¼ aT bNc ð11Þ

where, �p ¼ accumulated plastic strain at N repetition of
load; �r ¼ resilient strain of the asphalt material as a
function of mix properties, temperature, and time rate
of loading; N ¼number of load repetitions; T ¼ pave-
ment temperature, and a, b, and c are unknown model
coefficients. Although many researchers including Leahy
and Ayres tried to obtain suitable estimates for the
unknown parameters by performing repeated load per-
manent deformation tests, their models were able to
the accumulated strain with R2 of not higher than
0.76 with temperature being the most important variable
and loading conditions, material type, and mix parame-
ters being less important ones [2]. In comparison with

both theperformance ofoverallthe literature, the
PCR and PCNN models which is expressed in terms
of the three test statistics used in the work is signifi-
cantly higher than previous prediction models used in
the AASHTO design procedure [2].

Comparing the two best folds for training and testing
stages indicates that although the PCR modeling works
well in predicting the response variable, PCNN has the best
results in both training and testing.
ext.

PCNN

Fold 3Fold 2Fold 1Fold 3

34.990 � 46.19242.99
944.831350.87729.411514.59
0.940.870.960.85

na0.72 * na* na*

�226.1 � 149.298.24 �169.6
1037.28719.9694.532110.64

0.73 0.97 0.920.95
na* na* na* na*

https://doi.org/10.1016/j.ijprt.2018.01.003
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6.2. Model validation

Equation (10) is a general regression model for this
study:

yi ¼ f ðZi; hÞ þ ei ð12Þ
where f is the expectation function, h is the vector of
parameters and ei is random error term assumed to be
Fig. 4a. Plot of the residuals for best fold of PCR model.

Fig. 4b. Plot of the residuals for best fold of PCNN model.

Fig. 5a. Normal probability plot of the residuals for best fold of PCR
model.

Fig. 5b. Normal probability plot of the residuals for best fold of PCNN
model.
normally distributed with mean zero and unknown vari-
ance r2 for i = 1,. . ., n, where n is the number of input vec-
tors. Violation of these assumptions and model adequacy
can be investigated by the examination of residuals, defined
by Eq. (11):

ei ¼ yi � ŷi ð13Þ
Through the analysis of residuals, many types of model

inadequacies and violations of the underlying assumptions
can be assessed. If the model is adequate, the residuals
should contain no obvious pattern. Checking the normality
assumption can be done by constructing a normal proba-
bility plot of the residuals. If the underlying error distribu-
tion is normal, this plot will resemble a straight line [38].
These assumptions were checked for the best fold in each
method. The plots of residuals for the best folds are pre-
sented in Fig. 4. Since there is no obvious pattern in the
residual plot, the assumption of equal variances seems
acceptable. The normal probability plots of the residuals
for both models are presented in Fig. 5. The data points
are not too far away from a straight line. Therefore, the
normality assumption does not appear to be violated.

7. Conclusions and recommendations

This study used the experimental data of the permanent
deformation of asphalt mixture and focused on the evalu-
ation and qualifying the input variables to be used in fur-
ther modeling. A total number of 17 input variables from
three categories of material properties including binder,
aggregate and mixture properties were selected as the effec-
tive parameters in rutting behavior. Cross-correlated input
variables were identified by correlation analysis and substi-
tuted by the orthogonal pseudo-inputs (PCs) using a
dimensionality reduction technique called PCA. This work
compared multiple regression and ANN modeling of a

https://doi.org/10.1016/j.ijprt.2018.01.003
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small set of pseudo-variables determined from PCA (PCR
and PCNN, respectively). Both proposed approaches mod-
eled the amount of permanent deformation well with
PCNN fitting the test data significantly better. Nonethe-
less, both approaches showed better performance as a
modeling tool than other regression-based approaches that
use standard variables in the AASHTO design procedure.
Thus, these PCA approaches are strongly recommended
as sound modeling approaches in this application. More-
over, theses methodologies appear to also have much pro-
mise in modeling other material properties at every effective
temperature and this investigation is recommended in
future studies. Another future study to consider is develop-
ment of an approach to determine the importance of each
input on the response. Considering the obtained regression
model (Eq. (5)), the linear terms contain orthogonal vari-
ables (i.e. PCs) which are in the same normalized scale.
Therefore, the linear terms with the largest coefficients
(with the absolute value) are the ones with greatest contri-
bution. In order to map this principal component that con-
tributes the most to the original input space and finding the
input with the greatest contribution, one can consider the
coefficients for each input value in Table 3. The one with
the largest absolute value is associated variable contributes
the most to that pseudo-variable.
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